Skip to main content

Introduction to Complex Cardiovascular Physiology

  • Chapter
  • First Online:
Complexity and Nonlinearity in Cardiovascular Signals

Abstract

This chapter aims at providing a brief overview of the main aspects in cardiovascular physiology that have encouraged and justified the use of advanced nonlinear signal processing methodologies for the study of the cardiovascular system. This system, in fact, constantly adapts to changes in internal and external conditions to maintain blood pressure homeostasis through complex and dynamic feedback mechanisms that simultaneously affect several processes such as heart rate, cardiac output, blood pressure, respiration, peripheral resistance etc. Therefore, there is a need for nonlinear, non-stationary, and multivariate approaches to assess cardiovascular interactions and their causal structure in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heesch, C.M.: Reflexes that control cardiovascular function. Adv. Physiol. Educ. 277(6), S234–S243 (1999). [Online]. Available: http://advan.physiology.org/content/277/6/S234.short

  2. Guyton, A., Hall, J.: The autonomic nervous system and the adrenal medulla. In: Guyton, A.C., Hall, J.E. (eds.) Textbook of Medical Physiology, pp. 748–760. Elsevier and Saunders, Philadelphia (2006)

    Google Scholar 

  3. Thomas, G.D.: Neural control of the circulation. Adv. Physiol. Educ. 35(1), 28–32 (2011). [Online]. Available: http://advan.physiology.org/content/35/1/28.abstract

  4. Olshansky, B., Sabbah, H.N., Hauptman, P.J., Colucci, W.S.: Parasympathetic nervous system and heart failure. Circulation 118(8), 863–871 (2008). [Online]. Available: http://circ.ahajournals.org/content/118/8/863.short

  5. Yamakawa, K., So, E.L., Rajendran, P.S., Hoang, J.D., Makkar, N., Mahajan, A., Shivkumar, K., Vaseghi, M.: Electrophysiological effects of right and left vagal nerve stimulation on the ventricular myocardium. Am. J. Physiol. Heart Circ. Physiol. 307(5), H722–H731, 2014. [Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4187397&tool=pmcentrez&rendertype=abstract

  6. Shinlapawittayatorn, K., Chinda, K., Palee, S., Surinkaew, S., Thunsiri, K., Weerateerangkul, P., Chattipakorn, S., KenKnight, B.H., Chattipakorn, N.: Low-amplitude, left vagus nerve stimulation significantly attenuates ventricular dysfunction and infarct size through prevention of mitochondrial dysfunction during acute ischemia-reperfusion injury. Heart Rhythm 10(11), 1700–1707 (2013). [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1547527113008473

  7. De Ferrari, G.M., Crijns, H.J., Borggrefe, M., Milasinovic, G., Smid, J., Zabel, M., Gavazzi, A., Sanzo, A., Dennert, R., Kuschyk, J., Raspopovic, S., Klein, H., Swedberg, K., Schwartz, P.J.: Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur. Heart J. 32(7), 847–855 (2011). [Online]. Available: http://eurheartj.oxfordjournals.org/content/32/7/847.abstract

  8. Lopshire, J., Zipes, D.: Device therapy to modulate the autonomic nervous system to treat heart failure. Curr. Cardiol. Rep. 14(5), 593–600 (2012). [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0-84870586959&partnerID=40&md5=2e4e9453f0b6a546744573944f78f6ec

  9. Zannad, F., De Ferrari, G.M., Tuinenburg, A.E., Wright, D., Brugada, J., Butter, C., Klein, H., Stolen, C., Meyer, S., Stein, K.M., Ramuzat, A., Schubert, B., Daum, D., Neuzil, P., Botman, C., Castel, M.A., D’Onofrio, A., Solomon, S.D., Wold, N., Ruble, S.B.: Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur. Heart J. 36(7), 425–433 (2015). [Online]. Available: http://eurheartj.oxfordjournals.org/content/36/7/425.abstract

  10. Premchand, R.K., Sharma, K., Mittal, S., Monteiro, R., Dixit, S., Libbus, I., DiCarlo, L.A., Ardell, J.L., Rector, T.S., Amurthur, B., KenKnight, B.H., Anand, I.S.: Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF Trial. J. Card. Fail. 20(11), 808–816 (2014). [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1071916414011890

  11. Abraham, W.T., Zile, M.R., Weaver, F.A., Butter, C., Ducharme, A., Halbach, M., Klug, D., Lovett, E.G., Müller-Ehmsen, J., Schafer, J.E., Senni, M., Swarup, V., Wachter, R., Little, W.C.: Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction. JACC Heart Fail. 3(6), 487–496 (2015). [Online]. Available: http://dx.doi.org/10.1016/j.jchf.2015.02.006

  12. Gold, M.R., Van Veldhuisen, D.J., Hauptman, P.J., Borggrefe, M., Kubo, S.H., Lieberman, R.A., Milasinovic, G., Berman, B.J., Djordjevic, S., Neelagaru, S., Schwartz, P.J., Starling, R.C., Mann, D.L.: Vagus nerve stimulation for the treatment of heart failure. J. Am. Coll. Cardiol. 68(2), 149–158 (2016). [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0735109716324044

  13. Hayano, J., Yasuma, F.: Hypothesis: respiratory sinus arrhythmia is an intrinsic resting function of cardiopulmonary system. Cardiovasc. Res. 58(1), 1–9 (2003). [Online]. Available: http://cardiovascres.oxfordjournals.org/content/58/1/1.abstract

  14. Akselrod, S., Gordon, D., Ubel, F.A., Shannon, D.C., Barger, A.C., Cohen, R.J.: Power spectrum analysis of heart rate fluctuations: a quantitative probe of beat-to-beat cardiovascular control. Science 213, 220–222 (1981)

    Article  CAS  PubMed  Google Scholar 

  15. Saul, J.P., Berger, R.D., Albrecht, P., Stein, S.P., Chen, M.H., Cohen, R.J.: Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am. J. Physiol. Heart Circ. Physiol. 261(4), H1231–H1245 (1991). [Online]. Available: http://ajpheart.physiology.org/content/261/4/H1231.abstract

  16. Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., Sandrone, G., Malfatto, G., Dell’Orto, S., Piccaluga, F., Turiel, M., Baselli, G., Cerutti, S., Malliani, A.: Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dogs. Circ. Res. 59, 178–193 (1986)

    Article  CAS  PubMed  Google Scholar 

  17. Tzeng, Y.C., Sin, P.Y.W., Galletly, D.C.: Human sinus arrhythmia: inconsistencies of a teleological hypothesis. Am. J. Physiol. Heart Circ. Physiol. 296(1), H65–H70 (2009). [Online]. Available: http://ajpheart.physiology.org/content/296/1/H65.abstract

  18. Grossman, P., Wilhelm, F.H., Spoerle, M.: Respiratory sinus arrhythmia, cardiac vagal control, and daily activity. Am. J. Physiol. Heart Circ. Physiol. 287(2), H728–H734 (2004). [Online]. Available: http://ajpheart.physiology.org/content/287/2/H728.abstract

  19. Grossman, P., Taylor, E.W.: Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol. Psychol. 74(2), 263–285 (2007). [Online]. Available: http://www.sciencedirect.com/science/article/B6T4T-4M7VFNK-1/2/8584deabf148494e14911e8fed4cf52c

  20. Eckberg, D.L.: The human respiratory gate. J. Physiol. 548(2), 339–352 (2003). [Online]. Available: http://jp.physoc.org/content/548/2/339.abstract

  21. Chen, Z., Brown, E.N., Barbieri, R.: Assessment of autonomic control and respiratory sinus arrhythmia using point process models of human heart beat dynamics. IEEE Trans. Biomed. Eng. 56(7), 1791–1802 (2009). [Online]. Available: http://dx.doi.org/10.1109/TBME.2009.2016349

  22. Goldberger, J.J., Challapalli, S., Tung, R., Parker, M.A., Kadish, A.H.: Relationship of heart rate variability to parasympathetic effect. Circulation 103(15), 1977–1983 (2001). [Online]. Available: http://circ.ahajournals.org/content/103/15/1977.abstract

  23. Eckberg, D.L.: Point:counterpoint: respiratory sinus arrhythmia is due to a central mechanism vs. respiratory sinus arrhythmia is due to the baroreflex mechanism. J. Appl. Physiol. 106(5), 1740–1742 (2009); discussion 1744. [Online]. Available: http://dx.doi.org/10.1152/japplphysiol.91107.2008

  24. deBoer, R.W., Karemaker, J.M., Strackee, J.: Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am. J. Physiol. 253(3 Pt 2), H680–H689 (1987)

    Google Scholar 

  25. Karemaker, J.M.: Counterpoint: respiratory sinus arrhythmia is due to the baroreflex mechanism. J. Appl. Physiol. 106(5), 1742–1743 (2009); discussion 1744. [Online]. Available: http://dx.doi.org/10.1152/japplphysiol.91107.2008a

  26. Karemaker, J.M.: Last word on point:counterpoint: respiratory sinus arrhythmia is due to a central mechanism vs. respiratory sinus arrhythmia is due to the baroreflex mechanism. J. Appl. Physiol. 106(5), 1750 (2009). [Online]. Available: http://dx.doi.org/10.1152/japplphysiol.00225.2009

  27. Blain, G., Meste, O., Bermon, S.: Influences of breathing patterns on respiratory sinus arrhythmia in humans during exercise. Am. J. Physiol. Heart Circ. Physiol. 288(2), H887–H895 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Meste, O., Khaddoumi, B., Blain, G., Bermon, S.: Time-varying analysis methods and models for the respiratory and cardiac system coupling in graded exercise. IEEE Trans. Biomed. Eng. 52(11), 1921–1930 (2005)

    Article  PubMed  Google Scholar 

  29. Julien, C., Parkes, M.J., Tzeng, S.Y.C., Sin, P.Y.W., Ainslie, P.N., van de Borne, P., Fortrat, J.-O., Custaud, M.-A., Gharib, C., Porta, A., Vallais, F., Baselli, G., Pagani, M., Lucini, D., Hughson, R.L., Taylor, J.A., Tan, C.O., Baekey, D.M., Dick, T.E., Paton, J.F.R., Taha, B.: Comments on point:counterpoint: respiratory sinus arrhythmia is due to a central mechanism vs. respiratory sinus arrhythmia is due to the baroreflex mechanism. J. Appl. Physiol. 106(5), 1745–1749 (2009). [Online]. Available: http://dx.doi.org/10.1152/japplphysiol.00196.2009

  30. Badra, L.J., Cooke, W.H., Hoag, J.B., Crossman, A.A., Kuusela, T.A., Tahvanainen, K.U.O., Eckberg, D.L.: Respiratory modulation of human autonomic rhythms. Am. J. Physiol. Heart Circ. Physiol. 280(6), H2674–H2688 (2001). [Online]. Available: http://ajpheart.physiology.org/content/280/6/H2674.abstract

  31. Porta, A., Baselli, G., Rimoldi, O., Malliani, A., Pagani, M.: Assessing baroreflex gain from spontaneous variability in conscious dogs: role of causality and respiration. Am. J. Physiol. Heart Circ. Physiol. 279(5), H2558–H2567 (2000)

    CAS  PubMed  Google Scholar 

  32. Vallais, F., Baselli, G., Lucini, D., Pagani, M., Porta, A.: Spontaneous baroreflex sensitivity estimates during graded bicycle exercise: a comparative study. Physiol. Meas. 30(2), 201–213 (2009). [Online]. Available: http://dx.doi.org/10.1088/0967-3334/30/2/007

  33. Porta, A., Catai, A.M., Takahashi, A.C.M., Magagnin, V., Bassani, T., Tobaldini, E., van de Borne, P., Montano, N.: Causal relationships between heart period and systolic arterial pressure during graded head-up tilt. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300(2), R378–R386 (2011). [Online]. Available: http://ajpregu.physiology.org/content/300/2/R378.abstract

  34. de Boer, R., Karemaker, J., Strackee, J.: Relationships between short-term blood-pressure fluctuations and heart-rate variability in resting subjects II: a simple model. Med. Biol. Eng. Comput. 23, 359–364 (1985). [Online]. Available: http://dx.doi.org/10.1007/BF02441590

  35. Sin, P.Y.W., Galletly, D.C., Tzeng, Y.C.: Influence of breathing frequency on the pattern of respiratory sinus arrhythmia and blood pressure: old questions revisited. Am. J. Physiol. Heart Circ. Physiol. 298(5), H1588–H1599 (2010). [Online]. Available: http://ajpheart.physiology.org/content/298/5/H1588.abstract

  36. Hayano, J., Yasuma, F., Okada, A., Mukai, S., Fujinami, T.: Respiratory sinus arrhythmia: a phenomenon improving pulmonary gas exchange and circulatory efficiency. Circulation 94(4), 842–847 (1996). [Online]. Available: http://circ.ahajournals.org/content/94/4/842.abstract

  37. Yasuma, F., Hayano, J.-I.: Respiratory sinus arrhythmia*: Why does the heartbeat synchronize with respiratory rhythm? Chest 125(2), 683–690 (2004). [Online]. Available: http://chestjournal.chestpubs.org/content/125/2/683.abstract

  38. Yagishita, D., Chui, R.W., Yamakawa, K., Rajendran, P.S., Ajijola, O.A., Nakamura, K., So, E.L., Mahajan, A., Shivkumar, K., Vaseghi, M.: Sympathetic nerve stimulation, not circulating norepinephrine, modulates t-peak to t-end interval by increasing global dispersion of repolarization. Circ. Arrhythm. Electrophysiol. 8(1), 174–185 (2015). [Online]. Available: http://circep.ahajournals.org/content/8/1/174.abstract

  39. Malpas, S.C.: Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol. Rev. 90(2), 513–557 (2010). [Online]. Available: http://physrev.physiology.org/content/90/2/513.abstract

  40. Charkoudian, N., Rabbitts, J.A.: Sympathetic neural mechanisms in human cardiovascular health and disease. Mayo Clin. Proc. 84(9), 822–830 (2009). [Online]. Available: http://www.mayoclinicproceedings.com/content/84/9/822.abstract

  41. Task Force of the European Society of Cardiology the North American Society of Pacing: Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93(5), 1043–1065 (1996). [Online]. Available: http://circ.ahajournals.org/content/93/5/1043.short

  42. Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., Sandrone, G., Malfatto, G., Dell’Orto, S., Piccaluga, E.: Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ. Res. 59(2), 178–193 (1986). [Online]. Available: http://circres.ahajournals.org/content/59/2/178.abstract

  43. Malliani, A., Pagani, M., Montano, N., Mela, G.S.: Sympathovagal balance: a reappraisal. Circulation 98(23), 2640–2643 (1998). [Online]. Available: http://circ.ahajournals.org/content/98/23/2640.2.short

  44. Eckberg, D.L.: Sympathovagal balance: a critical appraisal. Circulation 96(9), 3224–3232 (1997). [Online]. Available: http://circ.ahajournals.org/content/96/9/3224.short

  45. Pueyo, E., Orini, M., Rodríguez, J.F., Taggart, P.: Interactive effect of beta-adrenergic stimulation and mechanical stretch on low-frequency oscillations of ventricular action potential duration in humans. J. Mol. Cell. Cardiol. 97, 93–105 (2016). [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0022282816301146

  46. Hanson, B., Child, N., Van Duijvenboden, S., Orini, M., Chen, Z., Coronel, R., Rinaldi, C.A., Gill, J.S., Gill, J.S., Taggart, P.: Oscillatory behavior of ventricular action potential duration in heart failure patients at respiratory rate and low frequency. Front. Physiol. 5, 414 (2014). [Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4211392&tool=pmcentrez&rendertype=abstract

  47. Rizas, K.D., Nieminen, T., Barthel, P., Zürn, C.S., Kähönen, M., Viik, J., Lehtimäki, T., Nikus, K., Eick, C., Greiner, T.O., Wendel, H.P., Seizer, P., Schreieck, J., Gawaz, M., Schmidt, G., Bauer, A.: Sympathetic activity-associated periodic repolarization dynamics predict mortality following myocardial infarction. J. Clin. Invest. 124(4), 1770–1780 (2014). [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0-84902156467&partnerID=40&md5=f08dade5cb8e62aa61ead95613c55139

  48. Baumert, M., Porta, A., Vos, M.A., Malik, M., Couderc, J.-P., Laguna, P., Piccirillo, G., Smith, G.L., Tereshchenko, L.G., Volders, P.G.A., QT interval variability in body surface ECG: measurement, physiological basis, and clinical value: position statement and consensus guidance endorsed by the European Heart Rhythm Association jointly with the ESC Working Group on Cardiac Cellular Electrophysiology. Europace 18(6), 925–944 (2016). [Online]. Available: http://europace.oxfordjournals.org/content/early/2016/01/27/europace.euv405.abstract

  49. Baumert, M., Schlaich, M.P., Nalivaiko, E., Lambert, E., Sari, C.I., Kaye, D.M., Elser, M.D., Sanders, P., Lambert, G.: Relation between QT interval variability and cardiac sympathetic activity in hypertension. Am. J. Physiol. Heart Circ. Physiol. 300(4), H1412–H1417 (2011). [Online]. Available: http://ajpheart.physiology.org/content/300/4/H1412.abstract

  50. Shen, M.J., Zipes, D.P.: Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ. Res. 114(6), 1004–1021 (2014). [Online]. Available: http://circres.ahajournals.org/content/114/6/1004.abstract

  51. Fukuda, K., Kanazawa, H., Aizawa, Y., Ardell, J.L., Shivkumar, K.: Cardiac innervation and sudden cardiac death. Circ. Res. 116(12), 2005–2019 (2015). [Online]. Available: http://circres.ahajournals.org/cgi/doi/10.1161/CIRCRESAHA.116.304679

  52. La Rovere, M.T., Pinna, G.D., Raczak, G.: Baroreflex sensitivity: measurement and clinical implications. Ann. Noninvasive Electrocardiol. 13(2), 191–207 (2008). [Online]. Available: http://dx.doi.org/10.1111/j.1542-474X.2008.00219.x

  53. Steptoe, A., Kivimaki, M.: Stress and cardiovascular disease. Nat. Rev. Cardiol. 9(6), 360–370 (2012). [Online]. Available: http://dx.doi.org/10.1038/nrcardio.2012.45

  54. Hopf, H.-B., Skyschally, A., Heusch, G., Peters, J.: Low-frequency spectral power of heart rate variability is not a specific marker of cardiac sympathetic modulation. J. Am. Soc. Anesthesiol. 82(3), 609–619 (1995)

    Article  CAS  Google Scholar 

  55. Taylor, J.A., Carr, D.L., Myers, C.W., Eckberg, D.L.: Mechanisms underlying very-low-frequency rr-interval oscillations in humans. Circulation 98(6), 547–555 (1998)

    Article  CAS  PubMed  Google Scholar 

  56. Goldstein, D.S., Bentho, O., Park, M.-Y., Sharabi, Y.: Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp. Physiol. 96(12), 1255–1261 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  57. Reyes del Paso, G.A., Langewitz, W., Mulder, L.J., Roon, A., Duschek, S.: The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiology 50(5), 477–487 (2013)

    Google Scholar 

  58. Karemaker, J., Wesseling, K.: Variability in cardiovascular control: the baroreflex reconsidered. Cardiovasc. Eng. 8, 23–29 (2008). [Online]. Available: http://dx.doi.org/10.1007/s10558-007-9046-4

  59. Karemaker, J.M.: Why do we measure baroreflex sensitivity the way we do? Clin. Auton. Res. 12(6), 427–428 (2002)

    Article  PubMed  Google Scholar 

  60. Taylor, J.A., Eckberg, D.L.: Fundamental relations between short-term rr interval and arterial pressure oscillations in humans. Circulation 93(8), 1527–1532 (1996). [Online]. Available: http://circ.ahajournals.org/cgi/content/abstract/93/8/1527

  61. Groothuis, J.T., Thijssen, D.H.J., Lenders, J.W.M., Deinum, J., Hopman, M.T.E.: Leg vasoconstriction during head-up tilt in patients with autonomic failure is not abolished. J. Appl. Physiol. 110(2), 416–422 (2011). [Online]. Available: http://jap.physiology.org/content/110/2/416.abstract

  62. Guyton, A., Hall, J. (eds.): Textbook on Medical Physiology. Elsevier, Philadelphia (2005)

    Google Scholar 

  63. Laude, D., Elghozi, J.-L., Girard, A., Bellard, E., Bouhaddi, M., Castiglioni, P., Cerutti, C., Cividjian, A., Rienzo, M.D., Fortrat, J.-O., Janssen, B., Karemaker, J.M., Lefthériotis, G., Parati, G., Persson, P.B., Porta, A., Quintin, L., Regnard, J., Rüdiger, H., Stauss, H.M.: Comparison of various techniques used to estimate spontaneous baroreflex sensitivity (the eurobavar study). Am. J. Physiol. Regul. Integr. Comp. Physiol. 286(1), R226–R231 (2004). [Online]. Available: http://dx.doi.org/10.1152/ajpregu.00709.2002

  64. Parati, G., Mancia, G., Rienzo, M.D., Castiglioni, P., Taylor, J.A., Studinger, P.: Point:counterpoint: cardiovascular variability is/is not an index of autonomic control of circulation. J. Appl. Physiol. 101(2), 676–682 (2006). [Online]. Available: http://jap.physiology.org/content/101/2/676.abstract

  65. Robbe, H.W., Mulder, L.J., Rüddel, H., Langewitz, W.A., Veldman, J.B., Mulder, G.: Assessment of baroreceptor reflex sensitivity by means of spectral analysis. Hypertension 10(5), 538–543 (1987)

    Article  CAS  PubMed  Google Scholar 

  66. Parati, G., Di Rienzo, M., Bertinieri, G., Pomidossi, G., Casadei, R., Groppelli, A., Pedotti, A., Zanchetti, A., Mancia, G.: Evaluation of the baroreceptor-heart rate reflex by 24-hour intra- arterial blood pressure monitoring in humans. Hypertension 12(2), 214–222 (1988). [Online]. Available: http://hyper.ahajournals.org/content/12/2/214.abstract

  67. Pagani, M., Somers, V., Furlan, R., Dell’Orto, S., Conway, J., Baselli, G., Cerutti, S., Sleight, P., Malliani, A.: Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension 12(6), 600–610 (1988)

    Article  CAS  PubMed  Google Scholar 

  68. Mainardi, L.T., Bianchi, A.M., Furlan, R., Piazza, S., Barbieri, R., di Virgilio, V., Malliani, A., Cerutti, S.: Multivariate time-variant identification of cardiovascular variability signals: a beat-to-beat spectral parameter estimation in vasovagal syncope. IEEE Trans. Biomed. Eng. 44(10), 978–989 (1997)

    Article  CAS  PubMed  Google Scholar 

  69. Orini, M., Laguna, P., Mainardi, L.T., Bailón, R.: Assessment of the dynamic interactions between heart rate and arterial pressure by the cross time-frequency analysis. Physiol. Meas. 33(3), 315–331 (2012). [Online]. Available: http://dx.doi.org/10.1088/0967-3334/33/3/315

  70. Chen, Z., Purdon, P., Harrell, G., Pierce, E., Walsh, J., Brown, E., Barbieri, R.: Dynamic assessment of baroreflex control of heart rate during induction of propofol anesthesia using a point process method. Ann. Biomed. Eng. 39, 260–276 (2011). [Online]. Available: http://dx.doi.org/10.1007/s10439-010-0179-z

  71. Keissar, K., Maestri, R., Pinna, G.D., Rovere, M.T.L., Gilad, O.: Non-invasive baroreflex sensitivity assessment using wavelet transfer function-based time-frequency analysis. Physiol. Meas. 31(7), 1021–1036 (2010). [Online]. Available: http://dx.doi.org/10.1088/0967-3334/31/7/011

  72. Dutoit, A.P., Hart, E.C., Charkoudian, N., Wallin, B.G., Curry, T.B., Joyner, M.J.: Cardiac baroreflex sensitivity is not correlated to sympathetic baroreflex sensitivity within healthy, young humans. Hypertension 56(6), 1118–1123 (2010). [Online]. Available: http://hyper.ahajournals.org/content/56/6/1118.abstract

  73. Eckberg, D.L., Drabinsky, M., Braunwald, E.: Defective cardiac parasympathetic control in patients with heart disease. N. Engl. J. Med. 285(16), 877–883 (1971). [Online]. Available: http://www.nejm.org/doi/full/10.1056/NEJM197110142851602

  74. Frattola, A., Parati, G., Gamba, P., Paleari, F., Mauri, G., Di Rienzo, M., Castiglioni, P., Mancia, G.: Time and frequency domain estimates of spontaneous baroreflex sensitivity provide early detection of autonomic dysfunction in diabetes mellitus. Diabetologia 40, 1470–1475 (1997). [Online]. Available: http://dx.doi.org/10.1007/s001250050851

  75. Robinson, T.G., Dawson, S.L., Eames, P.J., Panerai, R.B., Potter, J.F.: Cardiac baroreceptor sensitivity predicts long-term outcome after acute ischemic stroke. Stroke 34(3), 705–712 (2003). [Online]. Available: http://stroke.ahajournals.org/content/34/3/705.abstract

  76. La Rovere, M.T., Bigger, J.T., Marcus, F.I., Mortara, A., Schwartz, P.J.: Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet 351(9101), 478–484 (1998). [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0140673697111448

  77. Conci, F., Di Rienzo, M., Castiglioni, P.: Blood pressure and heart rate variability and baroreflex sensitivity before and after brain death. J. Neurol. Neurosurg. Psychiatry 71(5), 621–631 (2001). [Online]. Available: http://jnnp.bmj.com/content/71/5/621.abstract

  78. Parati, G.: Arterial baroreflex control of heart rate: determining factors and methods to assess its spontaneous modulation. J. Physiol. 565(3), 706–707 (2005). [Online]. Available: http://jp.physoc.org/content/565/3/706.short

  79. Cannon, W.B.: The Wisdom of the Body. W.W. Norton, New York (1932)

    Google Scholar 

  80. Cannon, W.B.: Bodily Changes in Pain, Fear, Hunger, and Rage. Appleton, New York (1929)

    Google Scholar 

  81. Rosenblueth, A., Simeone, F.A.: The interrelations of vagal and accelerator effects on the cardiac rate. Am. J. Physiol. Legacy Content 110(1), 42–55 (1934)

    Google Scholar 

  82. Samaan, A.: The effect of adrenalin, atropine and ether anaesthesia on the heart rate of normal dogs and the animal deprived of different parts of the autonomic nervous system. Arch. Int. Pharmacodyn. Thér. 50, 101–27 (1935)

    CAS  Google Scholar 

  83. Levy, M.N.: Brief reviews sympathetic-parasympathetic interactions in the heart. Circ. Res. 29(5), 437–445 (1971)

    Article  CAS  PubMed  Google Scholar 

  84. Levy, M.N.: Cardiac sympathetic-parasympathetic interactions. Fed. Proc. 43(11), 2598–2602 (1984)

    CAS  PubMed  Google Scholar 

  85. Levy, M.N., Blattberg, B.: Progressive reduction in norepinephrine overflow during cardiac sympathetic nerve stimulation in the anaesthetized dog. Cardiovasc. Res. 10(5), 549–555 (1976)

    Article  CAS  PubMed  Google Scholar 

  86. Furukawa, Y., Levy, M.N.: Temporal changes in he sympathetic-parasympathetic interactions that occur in the perfused canine atrium. Circ. Res. 55(6), 835–841 (1984)

    Article  CAS  PubMed  Google Scholar 

  87. Yang, T., Levy, M.N.: Sequence of excitation as a factor in sympathetic-parasympathetic interactions in the heart. Circ. Res. 71(4), 898–905 (1992)

    Article  CAS  PubMed  Google Scholar 

  88. Warner, M.R., Levy, M.N.: Neuropeptide y as a putative modulator of the vagal effects on heart rate. Circ. Res. 64(5), 882–889 (1989)

    Article  CAS  PubMed  Google Scholar 

  89. Potter, E.K.: Prolonged non-adrenergic inhibition of cardiac vagal action following sympathetic stimulation: neuromodulation by neuropeptide Y? Neurosci. Lett. 54(2), 117–121 (1985)

    Article  CAS  PubMed  Google Scholar 

  90. Potter, E.: Presynaptic inhibition of cardiac vagal postganglionic nerves by neuropeptide y. Neurosci. Lett. 83(1–2), 101–106 (1987)

    Article  CAS  PubMed  Google Scholar 

  91. Warner, M.R., Levy, M.N.: Inhibition of cardiac vagal effects by neurally released and exogenous neuropeptide y. Circ. Res. 65(6), 1536–1546 (1989)

    Article  CAS  PubMed  Google Scholar 

  92. Smith-White, M.A., Herzog, H., Potter, E.K.: Role of neuropeptide yy 2 receptors in modulation of cardiac parasympathetic neurotransmission. Regul. Pept. 103(2), 105–111 (2002)

    Article  CAS  PubMed  Google Scholar 

  93. Berntson, G.G., Cacioppo, J.T., Fieldstone, A.: Illusions, arithmetic, and the bidirectional modulation of vagal control of the heart. Biol. Psychol. 44(1), 1–17 (1996)

    Article  CAS  PubMed  Google Scholar 

  94. Porter, T.R., Eckberg, D.L., Fritsch, J.M., Rea, R.F., Beightol, L.A., Schmedtje, J.F. Jr, Mohanty, P.K.: Autonomic pathophysiology in heart failure patients. Sympathetic-cholinergic interrelations. J. Clin. Invest. 85(5), 1362 (1990)

    Article  CAS  PubMed  Google Scholar 

  95. Berntson, G.G., Cacioppo, J.T.: Heart rate variability: stress and psychiatric conditions. Dyn. Electrocardiogr. 57–64 (2004)

    Google Scholar 

  96. Sunagawa, K., Kawada, T., Nakahara, T.: Dynamic nonlinear vago-sympathetic interaction in regulating heart rate. Heart Vessels 13(4), 157–174 (1998)

    Article  CAS  PubMed  Google Scholar 

  97. Kawada, T., Sugimachi, M., Shishido, T., Miyano, H., Sato, T., Yoshimura, R., Miyashita, H., Nakahara, T., Alexander, J., Sunagawa, K.: Simultaneous identification of static and dynamic vagosympathetic interactions in regulating heart rate. Am. J. Physiol. Regul. Integr. Comp. Physiol. 276(3), R782–R789 (1999)

    CAS  Google Scholar 

  98. Marmarelis, V.: Analysis of Physiological Systems: The White-Noise Approach. Springer Science and Business Media, New York (2012)

    Google Scholar 

  99. Berger, R.D., Saul, J.P., Cohen, R.J.: Transfer function analysis of autonomic regulation. I. canine atrial rate response. Am. J. Physiol. Heart Circ. Physiol. 256(1), H142–H152 (1989)

    CAS  Google Scholar 

  100. Peng, C.-K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos Interdisciplinary J. Nonlinear Sci. 5(1), 82–87 (1995)

    Article  CAS  Google Scholar 

  101. Tulppo, M.P., Kiviniemi, A.M., Hautala, A.J., Kallio, M., Seppänen, T., Mäkikallio, T.H., Huikuri, H.V.: Physiological background of the loss of fractal heart rate dynamics. Circulation 112(3), 314–319 (2005)

    Article  PubMed  Google Scholar 

  102. Goldberger, A.L.: Fractal mechanisms in the electrophysiology of the heart. IEEE Eng. Med. Biol. Mag. 11(2), 47–52 (1992)

    Article  CAS  PubMed  Google Scholar 

  103. Iyengar, N., Peng, C., Morin, R., Goldberger, A.L., Lipsitz, L.A.: Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am. J. Physiol. Regul. Integr. Comp. Physiol. 271(4), R1078–R1084 (1996)

    CAS  Google Scholar 

  104. Karemaker, J.: The riddles of heart rate variability. Clin. Auton. Res. 11, 65–66 (2001). [Online]. Available: http://dx.doi.org/10.1007/BF02322048

  105. Julien, C.: The enigma of mayer waves: Facts and models. Cardiovasc. Res. 70(1), 12–21 (2006). [Online]. Available: http://dx.doi.org/10.1016/j.cardiores.2005.11.008

  106. Cooke, W.H., Hoag, J.B., Crossman, A.A., Kuusela, T.A., Tahvanainen, K.U.O., Eckberg, D.L.: Human responses to upright tilt: a window on central autonomic integration. J. Physiol. 517(2), 617–628 (1999). [Online]. Available: http://jp.physoc.org/content/517/2/617.abstract

  107. Malliani, A., Pagani, M., Lombardi, F., Cerutti, S.: Cardiovascular neural regulation explored in the frequency domain. Circulation 84, 482–492 (1991)

    Article  CAS  PubMed  Google Scholar 

  108. Montano, N., Ruscone, T.G., Porta, A., Lombardi, F., Pagani, M., Malliani, A.: Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 90, 1826–1831 (1994)

    Article  CAS  PubMed  Google Scholar 

  109. Malliani, A., Julien, C., Billman, G.E., Cerutti, S., Piepoli, M.F., Bernardi, L., Sleight, P., Cohen, M.A., Tan, C.O., Laude, D., Elstad, M., Toska, K., Evans, J.M., Eckberg, D.L.: Cardiovascular variability is/is not an index of autonomic control of circulation. J. Appl. Physiol. 101(2), 684–688 (2006). [Online]. Available: http://jap.physiology.org/content/101/2/684.short

  110. Lombardi, F.: Clinical implications of present physiological understanding of hrv components. Card. Electrophysiol. Rev. 6, 245–249 (2002). [Online]. Available: http://dx.doi.org/10.1023/A:1016329008921

  111. La Rovere, M.T., Pinna, G.D., Maestri, R., Mortara, A., Capomolla, S., Febo, O., Ferrari, R., Franchini, M., Gnemmi, M., Opasich, C., Riccardi, P.G., Traversi, E., Cobelli, F.: Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation 107(4), 565–570 (2003). [Online]. Available: http://circ.ahajournals.org/content/107/4/565.abstract

  112. Rajendra Acharya, U., Paul Joseph, K., Kannathal, N., Lim, C., Suri, J.: Heart rate variability: a review. Med. Biol. Eng. Comput. 44(12), 1031–1051 (2006). [Online]. Available: http://dx.doi.org/10.1007/s11517-006-0119-0

  113. Mainardi, L.T., Bianchi, A.M., Baselli, G., Cerutti, S.: Pole-tracking algorithms for the extraction of time-variant heart rate variability spectral parameters. IEEE Trans. Biomed. Eng. 42(3), 250–259 (1995); iD: 1

    Google Scholar 

  114. Mainardi, L.T.: On the quantification of heart rate variability spectral parameters using time-frequency and time-varying methods. Philos. Trans. A Math. Phys. Eng. Sci. 367(1887), 255–275 (2009)

    Article  PubMed  Google Scholar 

  115. Novak, P., Novak, V.: Time/frequency mapping of the heart rate, blood pressure and respiratory signals. Med. Biol. Eng. Comput. 31(2), 103–110 (1993)

    Article  CAS  PubMed  Google Scholar 

  116. Pola, S., Macerata, A., Emdin, M., Marchesi, C.: Estimation of the power spectral density in nonstationary cardiovascular time series: assessing the role of the time-frequency representations (tfr). IEEE Trans. Biomed. Eng. 43(1), 46 (1996)

    Article  CAS  PubMed  Google Scholar 

  117. Orini, M., Bailon, R., Laguna, P., Mainardi, L.T.: Modeling and estimation of time-varying heart rate variability during stress test by parametric and non parametric analysis. In: Proc. Computers in Cardiology, 30 September–3 October 2007, pp. 29–32. [Online]. Available: http://ieeexplore.ieee.org/ielx5/4729058/4745405/04745413.pdf?tp=

  118. Orini, M., Bailón, R., Enk, R., Koelsch, S., Mainardi, L., Laguna, P.: A method for continuously assessing the autonomic response to music-induced emotions through hrv analysis. Med. Biol. Eng. Comput. 48(5), 423–433 (2010). [Online]. Available: http://dx.doi.org/10.1007/s11517-010-0592-3

  119. Barbieri, R., Matten, E.C., Alabi, A.A., Brown, E.N.: A point-process model of human heartbeat intervals: new definitions of heart rate and heart rate variability. Am. J. Physiol. Heart Circ. Physiol. 288(1), H424–H435 (2005). [Online]. Available: http://ajpheart.physiology.org/content/288/1/H424.abstract

  120. Sassi, R., Cerutti, S., Lombardi, F., Malik, M., Huikuri, H.V., Peng, C.-K., Schmidt, G., Yamamoto, Y., Gorenek, B., Lip, G.Y.H., Grassi, G., Kudaiberdieva, G., Fisher, J.P., Zabel, M., Macfadyen, R.: Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace 17(9), 1341–1353 (2015). [Online]. Available: http://europace.oxfordjournals.org/content/17/9/1341.abstract

  121. Eckberg, D.L.: Temporal response patterns of the human sinus node to brief carotid baroreceptor stimuli. J. Physiol. 258(3), 769–782 (1976). [Online]. Available: http://jp.physoc.org/content/258/3/769.abstract

  122. Mainardi, L.T., Bianchi, A.M., Cerutti, S.: Time-frequency and time-varying analysis for assessing the dynamic responses of cardiovascular control. Crit. Rev. Biomed. Eng. 30(1–3), 175–217 (2002); lR: 20051116; PUBM: Print; JID: 8208627; RF: 112; ppublish

    Google Scholar 

  123. Baselli, G., Caiani, E., Porta, A., Montano, N., Signorini, M.G., Cerutti, S.: Biomedical signal processing and modeling in cardiovascular systems. Crit. Rev. Biomed. Eng. 30(1–3), 55–84 (2002)

    Article  PubMed  Google Scholar 

  124. Mateo, J., Laguna, P.: Analysis of heart rate variability in the presence of ectopic beats using the heart timing signal. IEEE Trans. Biomed. Eng. 50(3), 334–343 (2003)

    Article  PubMed  Google Scholar 

  125. Mateo, J., Laguna, P.: Improved heart rate variability signal analysis from the beat occurrence times according to the IPFM model. IEEE Trans. Biomed. Eng. 47(8), 985–996 (2000)

    Article  CAS  PubMed  Google Scholar 

  126. Pyetan, E., Akselrod, S.: Do the high-frequency indexes of hrv provide a faithful assessment of cardiac vagal tone? a critical theoretical evaluation. IEEE Trans. Biomed. Eng. 50(6), 777–783 (2003)

    Article  PubMed  Google Scholar 

  127. Bailón, R., Laouini, G., Grao, C., Orini, M., Laguna, P., Meste, O.: The integral pulse frequency modulation model with time-varying threshold: application to heart rate variability analysis during exercise stress testing. IEEE Trans. Biomed. Eng. 58(3), 642–652 (2011)

    Article  PubMed  Google Scholar 

  128. Barbieri, R., Brown, E.: Analysis of heartbeat dynamics by point process adaptive filtering. IEEE Trans. Biomed. Eng. 53(1), 4–12 (2006)

    Article  PubMed  Google Scholar 

  129. Brown, E.N., Barbieri, R., Ventura, V., Kass, R.E., Frank, L.M.: The time-rescaling theorem and its application to neural spike train data analysis. Neural Comput. 14(2), 325–346 (2002). [Online]. Available: http://dx.doi.org/10.1162/08997660252741149

  130. Rugarn, O., Hammar, M., Theodorsson, A., Theodorsson, E., Stenfors, C.: Sex differences in neuropeptide distribution in the rat brain. Peptides 20(1), 81–86 (1999)

    Article  CAS  PubMed  Google Scholar 

  131. Beaston-Wimmer, P., Smolen, A.J.: Gender differences in neurotransmitter expression in the rat superior cervical ganglion. Dev. Brain Res. 58(1), 123–128 (1991)

    Article  CAS  Google Scholar 

  132. Loy, R., Sheldon, R.A.: Sexually dimorphic development of cholinergic enzymes in the rat septohippocampal system. Dev. Brain Res. 34(1), 156–160 (1987)

    Article  CAS  Google Scholar 

  133. Du, X.-J., Riemersma, R.A., Dart, A.M.: Cardiovascular protection by oestrogen is partly mediated through modulation of autonomic nervous function. Cardiovasc. Res. 30(2), 161–165 (1995)

    Article  CAS  PubMed  Google Scholar 

  134. Du, X.-J., Dart, A.M., Riemersma, R.A., Oliver, M.F.: Sex difference in presynaptic adrenergic inhibition of norepinephrine release during normoxia and ischemia in the rat heart. Circ. Res. 68(3), 827–835 (1991)

    Article  CAS  PubMed  Google Scholar 

  135. Dart, A.M., Du, X.-J., Kingwell, B.A.: Gender, sex hormones and autonomic nervous control of the cardiovascular system. Cardiovasc. Res. 53(3), 678–687 (2002)

    Article  CAS  PubMed  Google Scholar 

  136. Hinojosa-Laborde, C., Chapa, I., Lange, D., Haywood, J.R.: Gender differences in sympathetic nervous system regulation. Clin. Exp. Pharmacol. Physiol. 26(2), 122–126 (1999)

    Article  CAS  PubMed  Google Scholar 

  137. Frey, M.A.B., Tomaselli, C.M., Hoffler, W.G.: Cardiovascular responses to postural changes: differences with age for women and men. J. Clin. Pharmacol. 34(5), 394–402 (1994)

    Article  CAS  PubMed  Google Scholar 

  138. Lenders, J.W., De Boo, T., Lemmens, W.A., Reuenga, J., Willemsen, J.J., Thien, T.: Comparison of blood pressure response to exogenous epinephrine in hypertensive men and women. Am. J. Cardiol. 61(15), 1288–1291 (1988)

    Article  CAS  PubMed  Google Scholar 

  139. Frankenhaeuser, M., Dunne, E., Lundberg, U.: Sex differences in sympathetic-adrenal medullary reactions induced by different stressors. Psychopharmacology 47(1), 1–5 (1976)

    Article  CAS  PubMed  Google Scholar 

  140. Marrugat, J., Antó, J.M., Sala, J., Masiá, R., R. Investigators, et al.: Influence of gender in acute and long-term cardiac mortality after a first myocardial infarction. J. Clin. Epidemiol. 47(2), 111–118 (1994)

    Google Scholar 

  141. Tunstall-Pedoe, H., Morrison, C., Woodward, M., Fitzpatrick, B., Watt, G.: Sex differences in myocardial infarction and coronary deaths in the scottish monica population of glasgow 1985 to 1991 presentation, diagnosis, treatment, and 28-day case fatality of 3991 events in men and 1551 events in women. Circulation 93(11), 1981–1992 (1996)

    Article  CAS  PubMed  Google Scholar 

  142. Adams, K.F., Sueta, C.A., Gheorghiade, M., O’Connor, C.M., Schwartz, T.A., Koch, G.G., Uretsky, B., Swedberg, K., McKenna, W., Soler-Soler, J., et al.: Gender differences in survival in advanced heart failure insights from the first study. Circulation 99(14), 1816–1821 (1999)

    Article  PubMed  Google Scholar 

  143. Simon, T., Mary-Krause, M., Funck-Brentano, C., Jaillon, P., C.I. Investigators, et al.: Sex differences in the prognosis of congestive heart failure results from the Cardiac Insufficiency Bisoprolol Study (CIBIS II). Circulation 103(3), 375–380 (2001)

    Google Scholar 

  144. Ramaekers, D., Ector, H., Aubert, A., Rubens, A., Van de Werf, F.: Heart rate variability and heart rate in healthy volunteers. is the female autonomic nervous system cardioprotective? Eur. Heart J. 19(9), 1334–1341 (1998)

    Google Scholar 

  145. Eaker, E., Packard, B., Thom, T.: Epidemiology and risk factors for coronary heart disease in women. Cardiovasc. Clin. 19(3), 129–145 (1988)

    Google Scholar 

  146. Marmarelis, V.Z.: Nonlinear Dynamic Modeling of Physiological Systems, vol. 10. Wiley, New York (2004)

    Book  Google Scholar 

  147. Kirsch, M.R., Monahan, K., Weng, J., Redline, S., Loparo, K.A.: Entropy-based measures for quantifying sleep-stage transition dynamics: relationship to sleep fragmentation and daytime sleepiness. IEEE Trans. Biomed. Eng. 59(3), 787–796 (2012)

    Article  PubMed  Google Scholar 

  148. Téllez, J.P., Herrera, S., Benito, S., Giraldo, B.F.: Analysis of the breathing pattern in elderly patients using the hurst exponent applied to the respiratory flow signal. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3422–3425. IEEE, New York (2014)

    Google Scholar 

  149. Giraldo, B.F., Téllez, J.P., Herrera, S., Benito, S.: Study of the oscillatory breathing pattern in elderly patients. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5228–5231. IEEE, New York (2013)

    Google Scholar 

  150. Tranah, G.J., Blackwell, T., Stone, K.L., Ancoli-Israel, S., Paudel, M.L., Ensrud, K.E., Cauley, J.A., Redline, S., Hillier, T.A., Cummings, S.R., et al.: Circadian activity rhythms and risk of incident dementia and mild cognitive impairment in older women. Ann. Neurol. 70(5), 722–732 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  151. Umetani, K., Singer, D.H., McCraty, R., Atkinson, M.: Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J. Am. Coll. Cardiol. 31(3), 593–601 (1998)

    Article  CAS  PubMed  Google Scholar 

  152. Antelmi, I., De Paula, R.S., Shinzato, A.R., Peres, C.A., Mansur, A.J., Grupi, C.J.: Influence of age, gender, body mass index, and functional capacity on heart rate variability in a cohort of subjects without heart disease. Am. J. Cardiol. 93(3), 381–385 (2004)

    Article  PubMed  Google Scholar 

  153. Ryan, S.M., Goldberger, A.L., Pincus, S.M., Mietus, J., Lipsitz, L.A.: Gender-and age-related differences in heart rate dynamics: are women more complex than men? J. Am. Coll. Cardiol. 24(7), 1700–1707 (1994)

    Article  CAS  PubMed  Google Scholar 

  154. Beckers, F., Verheyden, B., Aubert, A.E.: Aging and nonlinear heart rate control in a healthy population. Am. J. Physiol. Heart Circ. Physiol. 290(6), H2560–H2570 (2006)

    Article  CAS  PubMed  Google Scholar 

  155. Voss, A., Heitmann, A., Schroeder, R., Peters, A., Perz, S.: Short-term heart rate variability – age dependence in healthy subjects. Physiol. Meas. 33(8), 1289 (2012)

    Article  CAS  PubMed  Google Scholar 

  156. Voss, A., Schulz, S., Schroeder, R., Baumert, M., Caminal, P.: Methods derived from nonlinear dynamics for analysing heart rate variability. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 367(1887), 277–296 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Orini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Orini, M., Barbieri, R., Nardelli, M., Scilingo, E.P., Valenza, G. (2017). Introduction to Complex Cardiovascular Physiology. In: Barbieri, R., Scilingo, E., Valenza, G. (eds) Complexity and Nonlinearity in Cardiovascular Signals. Springer, Cham. https://doi.org/10.1007/978-3-319-58709-7_1

Download citation

Publish with us

Policies and ethics