Skip to main content

Silicon in Agriculture

  • Chapter
  • First Online:

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 25))

Abstract

Agricultural production and sustainability are hampered by various abiotic stresses such as salinity, metal toxicity, nutrient imbalance, high temperature and radiation. There are also biotic stress like fungi, bacterial diseases and other pests. Application of silicon enhances the tolerance of crop plants against abiotic and biotic stresses. However, the physiological, biochemical, molecular and functional mechanisms of silicon activity under various stresses are poorly documented. Here we review silicon transport in plants, the role of silicon in cell culture and tissue culture, silicon-metal interaction, and silicon interaction with diseases. We decribe protection from pest incidence in rice, silicon-mediated oxidative stress tolerance, in conferring resistance to multiple stresses and characterization of silicon transporter gene s. Silicon is involved in the fortification of plants against oxidation of cell membranes and regulation of osmolytes within cells, leading to the protection of various plant structures and functions under drought conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman PB (1998) Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod Sci 1:96–103

    Article  Google Scholar 

  • Ahmad R, Zaheer S, Ismail S (1992) Role of silicon in salt tolerance of wheat (Triticum aestivum L.) Plant Sci 85:43–50

    Article  CAS  Google Scholar 

  • Ahmed M, Hassen F, Qadeer U, Aslam MA (2011) Silicon application and drought tolerance mechanism of sorghum. Afr J Agric Res 6:594–607

    Google Scholar 

  • Al-aghabary K, Zhu Z, Shi Q (2004) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Physiol 27(12):2101–2115

    CAS  Google Scholar 

  • Aleksandrov VG (1958) Organo-mineral fertilizers and silica bacteria. Dokl Akad-S Kh Nauk 7:43–48

    Google Scholar 

  • Ali AA, Alqurainy F (2006) Activities of antioxidants in plants under environmental stress. In: Motohashi N (ed) The Lutein-Prevention and treatment for diseases. Transworld Res. Network Press, Trivandrum

    Google Scholar 

  • Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationship in green cells. Physiol Plant 100:224–233

    Article  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase – hydrogen peroxidase scavenging enzyme in plants. Physiol Plant 85:235–224

    Article  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balakhnina T, Borkowska A (2013) Effects of silicon on plant resistance to environmental stresses: review. Int Agrophys 2013(27):225–232

    Google Scholar 

  • Balakhnina TI, Bennicelli RP, Stêpniewska Z, Stêpniewski W (2004) Oxygen stress in the root zone and plant response (some examples). In: Józefaciuk G (ed) Physics, chemistry and biogeochemistry in soil and plant studies. Institute of Agrophysics PAS Press, Lublin

    Google Scholar 

  • Balakhnina TI, Gavrilov AB, Wodarczyk TM, Borkowska A, Nosalewicz M, Fomina IR (2009) Dihydroquercetin protects barley seeds against mould and increases seedling adaptive potential under soil flooding. Plant Growth Regul 57:127–135

    Article  CAS  Google Scholar 

  • Balakhnina TI, Bennicelli RP, Stêpniewska Z, Stêpniewski W, Fomina IR (2010) Oxidative damage and antioxidant defense system in leaves of Vicia faba major L. cv. Bartom during soil flooding and subsequent drainage. Plant Soil 327:293–301

    Article  CAS  Google Scholar 

  • Balakhnina TI, Matichenkov VV, Wlodarczyk T, Borkowska A, Nosalewicz M, Fomina, IR (2012) Effects of silicon on growth processes and adaptive potential of barley plants under optimal soil watering and flooding. Plant Growth Regul, doi:10.1007/s10725-012-9658-6

  • Barcelo J, Guevara P, Poschenrieder C (1993) Silicon amelioration of aluminium toxicity in teosinte (Zea mays L. ssp. mexicana). Plant Soil 154:249–255

    Article  CAS  Google Scholar 

  • Beckmann M, Hock M, Bruelheide H, Erfmeier A (2012) The role of UV-B radiation in the invasion of Hieracium pilosella – a comparison of German and New Zealand plants. Environ Exp Bot 75:173–180

    Article  Google Scholar 

  • Bednarek W, Tkaczyk P, Dresler S (2006) Heavy metals content as criterion for assessment of carrot root. Acta Agrophysica 142:779–790

    Google Scholar 

  • Bélanger RR (2014) Silicon influence on biotic stress in plants. In: Proceedings of 6th international conference on silicon in agriculture (26–30 August), Stockholm Sweden

    Google Scholar 

  • Bélanger RR, Bowen PA, Ehret DL, Menzies JG (1995) Soluble silicon: its role in crop and disease management of greenhouse crops. Plant Dis 79:329–336

    Article  Google Scholar 

  • Bennicelli RP, Balakhnina TI, Szajnocha K, Banach A (2005) Aerobic conditions and antioxidative system of Azolla caroliniana Willd. in the presence of Hg in water solution. Int. Agrophysics 19:27–30

    CAS  Google Scholar 

  • Beyer W, Imlay J, Fridovich I (1991) Superoxide dismutase. Prog Nucl Asid Res 40:221–253

    Article  CAS  Google Scholar 

  • Bond R, McAuliffe JC (2003) Silicon biotechnology: new opportunities for carbohydrate science. Aust J Chem 56(1):7–11

    Article  CAS  Google Scholar 

  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Bronwyn R, Frame PR, Susan D, Bagnali V, Lewnau CJ, Bullock WP, Wilson M, Dunwell JM, Thompson JA, Wang K (1995) Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. Curr Issues Plant Mol Cell Biol 22:279–284

    Article  Google Scholar 

  • Cai K, Gao D, Chen J, Luo S (2009) Probing the mechanisms of silicon-mediated pathogen resistance. Plant Signal Behav 4:1–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassman KG, De Datta SK, Oik DC, Alcantara J, Samson M, Descalsota J, Dizon M (1995) Yield decline and the nitrogen economy of long-term experiments on continuous, irrigated rice systems in the tropics. In: Lal R, Stewart BA (eds) Soil management experimental basis for sustainability and environmental quality. CRC Publisher, Boca Raton, pp 181–222

    Google Scholar 

  • Chen H, Qualls RG, Blank RR (2005) Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. Aquat Bot 82:250–268

    Article  CAS  Google Scholar 

  • Ciobanu I (1961) Investigation on the efficiency on for biocontrol of Macrophomina phaseolina bacterial fertilizers applied to cotton. J Biol Cent Exp Control 8:41–44

    Google Scholar 

  • Coors JG (1987) Resistance to the European corn borer, Ostrinia nubilalis (Hubner), in maize, Zea mays L., as affected by soil silica, plant silica, structural carbohydrates, and lignin. In: Gabelman HW, Laughman B (eds) Genetic aspects of plant mineral nutrition. Martinus Nijhoff Publishers, Amsterdam, pp 445–456

    Chapter  Google Scholar 

  • Datnoff LE, Rodrigues FA (2005) The role of silicon in suppressing rice diseases. APSnet Feature Story, February

    Google Scholar 

  • Datnoff LE, Deren CW, Snyder GH (1997) Silicon fertilization for disease management of rice in Florida. Crop Prot 16:525–531

    Article  CAS  Google Scholar 

  • Datnoff LE, Snyder GH, Raid RN, Jones DB (1991) Effect of calcium silicate on blast and brown spot intensities and yields of rice. Plant Dis 34:729–732

    Article  Google Scholar 

  • Deren CW (2001) Plant genotype, silicon concentration, and silicon-related responses. In: Datnoff LE, Snyder GH, Korndorfer GH (eds) Silicon in agriculture. Elsevier Science, Amsterdam, pp 149–158

    Chapter  Google Scholar 

  • Deren CW, Datnoff LE, Snyder GH, Martin FG (1994) Silicon concentration, disease response, and yield components of rice genotypes grown on flooded organic histosols. Crop Sci 34:733–737

    Article  Google Scholar 

  • Devkota A, Jha PK (2011) Influence of water stress on growth and yield of Centella asiatica. Int Agrophys 25:211–214

    Google Scholar 

  • Egneus H, Heber U, Kirk M (1975) Reduction of oxygen by the electron transport chain of chloroplasts during assimilation of carbon dioxide. Biochim Biophys Acta 408:252–268

    Article  CAS  PubMed  Google Scholar 

  • Eneji E, Inanaga S, Muranaka J, Li P, An TH, Tsuji W (2005) Effect of calcium silicate on growth and dry matter yield of Chloris gayana and Sorghum sudanense under two soil water regimes. Grass Forage Sci 60:393–398

    Article  CAS  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci U S A 91:11–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664

    Article  CAS  PubMed  Google Scholar 

  • Epstein E (2001) Silicon in plants: facts vs. concepts. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, New York, pp 1–15

    Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Fang CX, Wang QS, Yu Y, Huang LK, Wu XC, Lin WX (2011) Silicon and its up taking gene Lsi1 in regulation of rice UV-B tolerance. Acta Agron Sin 37(06):1005–1011

    Article  CAS  Google Scholar 

  • Fawe A, Abou-Zaid M, Menzies JG, Bélanger RR (1998) Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology 88:396–401

    Article  CAS  PubMed  Google Scholar 

  • Fawe A, Menzies AJG, Chérif M, Bélanger RB (2001) Silicon and disease resistance in dicotyledons. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, New York, pp 1–15

    Google Scholar 

  • Gao X, Zou C, Wang L, Zhang F (2006) Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr 29:1637–1647

    Article  CAS  Google Scholar 

  • Ghanbari-Malidareh A (2011) Silicon application and nitrogen on yield and yield components in Rice (Oryza sativa L.) in two irrigation systems. World Acad Sci Eng Technol 5:2–27

    Google Scholar 

  • Gliñski J, Stêpniewski W (1985) Soil aeration and its role for plants. CRC Press, Boca Raton

    Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Gunes A, Inal A, Bagci EG, Coban S (2007) Silicon mediated changes on some physiological and enzymatic parameters symptomatic of oxidative stress in barley grown in sodic-B toxic soil. J Plant Physiol 164:807–811

    Article  CAS  PubMed  Google Scholar 

  • Gunes A, Pilbeam DJ, Inal A, Coban S (2008) Influence of silicon on sunflower cultivars under drought stress, I: growth, antioxidant mechanisms, and lipid peroxidation. Comm. Soil Sci. Plant Analysis 39:1885–1903

    Article  CAS  Google Scholar 

  • Hall AD, Morison CG (1906) On the function of silicon in the nutrition of cereals. Proc Roy Soc London B77:455–477

    Article  Google Scholar 

  • Halliwell B (1984) Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem Phys Lipids 44:327–340

    Article  Google Scholar 

  • Hamayun M, Sohn EY, Khan SA, Shinwari ZK, Khan AL, Lee IJ (2010) Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycine max L.) Pak J Bot 42:1713–1722

    CAS  Google Scholar 

  • Hammond KE, Evans DE, Hodson MJ (1995) Aluminium/silicon interactions in barley (Hordeum vulgareL.) seedlings. Plant Soil 173:89–95

    Article  CAS  Google Scholar 

  • Hejazi Mehrizi M, Shariatmadari H, Khoshgoftarmanesh AH, Zarezadeh A (2011) Effect of salinity and zinc on physiological and nutritional responses of rosemary. Int Agrophys 25:349–353

    Google Scholar 

  • Hernandez-Apaolaza L (2014) Can silicon partially alleviate micronutrient deficiency in plants? A review. Planta 240:447–458

    Article  CAS  PubMed  Google Scholar 

  • Hossain MT, Soga K, Wakabayashi K, Kamisaka S, Fujii S, Yamamoto R, Hoson T (2007) Modification of chemical properties of cell walls by silicon and its role in regulation of the cell wall extensibility in oat leaves. J Plant Physiol 164(4):385–393

    Article  CAS  PubMed  Google Scholar 

  • Ingri N (1978) Aqueous silicic acids, silicates and silicate complexes. In: Bendz G, Lindquist J (eds) Biochemistry of silicon and related problems. Plenum, New York, pp 3–52

    Chapter  Google Scholar 

  • Ishiguro K (2001) Review of research in Japan on the roles of silicon in conferring resistance against rice blast. In: Datnoff E, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier Science, Amsterdam, pp 277–291

    Chapter  Google Scholar 

  • Islam MN, Pradhan A, Kumar S (2005) Effects of crystallite size distribution on the Raman-scattering profiles of silicon nanostructures. J Appl Phys 98(2):024309

    Google Scholar 

  • Ito S, Hayashi H (1931) On the relation of silica supply to rice blast. J Sapporo Soc Agri Sci 103:460–461

    Google Scholar 

  • Jones LHP, Handreck KA (1967) Silica in soils, plants, and animals. In: Norman AG (ed) Advances in agronomy, vol 19. Academic Press, New York, pp 107–149

    Google Scholar 

  • Kawashima R (1927) Influence of silica on rice blast disease. Jpn J Soil Sci Plant Nutr 1:86–91

    Google Scholar 

  • Kaya C, Tuna L, Higgs D (2006) Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J Plant Nutr 29:1469–1480

    Article  CAS  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder C, Gunsé B, Barceló J (2001) The role of root exudates in aluminum resistance and silicon-induced amelioration of aluminum toxicity in three varieties of maize (Zea mays L.) J Exp Bot 52:1339–1352

    CAS  PubMed  Google Scholar 

  • Kim SG, Kim KW, Park EW, Choi D (2002) Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Am Phytopathol Soc 92:1095–1108

    Article  Google Scholar 

  • Kim YH, Khan AL, Kim DH, Lee SY, Kim KM, Waqas M, Jung HY, Shin JH, Kim JG, Lee IJ (2014) Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol 14:13–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27:969–978

    Article  CAS  Google Scholar 

  • Lee SK, Sohn EY, Hamayun M, Yoon JY, Lee IJ (2010) Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agrofor Syst 80:333–340

    Article  Google Scholar 

  • Li B, Wei Song C, Li N, Zhang J (2007) Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnol J 6:146–159

    Article  PubMed  CAS  Google Scholar 

  • Liang YC, Si J, Römheld V (2005) Silicon uptake and transport is an active process in Cucumis sativus L. New Phytol 167:797–804

    Article  CAS  PubMed  Google Scholar 

  • Liang YC, Chen QR, Liu Q, Zhang WH, Ding RX (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.) J Plant Physiol 160:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York, pp 51–54

    Google Scholar 

  • Lizana C, Hess S, Calderini DF (2009) Crop phenology modifies wheat responses to increased UV-B radiation. Agric For Meteorol 149:1964–1974

    Article  Google Scholar 

  • Lim MY, Lee EJ, Jana S, Sivanesan I, Jeong BR (2012) Effect of potassium silicate on growth and leaf epidermal characteristics of begonia and pansy grown in vitro. Kor J Hort Sci Technol 30:579–585

    CAS  Google Scholar 

  • Liu P, Yin L, Deng X, Wang S, Tanaka K, Zhang S (2014) Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L. J Exp Bot 65(17):4747–4756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lux A, Luxova M, Hattori T, Inanaga S, Sugimoto Y (2002) Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol Plant 115:87–92

    Article  CAS  PubMed  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18

    Article  CAS  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier Science, New York

    Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11(8):392–397

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Tamai K, Mitani N (2007) Genotypic difference in silicon uptake and expression of Silicon transporter genes in rice. Plant Physiol 145:919–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JF, Mitani N, Nagao S, Konishi S, Tamai K, Iwashita T, Yano M (2004) Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiol 136:3284–3289

    Google Scholar 

  • Mateos-Naranjo E, Andrades-Moreno L, Davy AJ (2013) Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiol Biochem 63:115–121

    Article  CAS  PubMed  Google Scholar 

  • Matichenkov VV, Ammosova JM (1996) Effect of amorphous silica on soil properties of a sod-podzolic soil. Eurasian Soil Sci 28:87–99

    Google Scholar 

  • Matichenkov VV, Calvert DV, Snyder GH (2000) Prospective silicon fertilization for citrus in Florida. Soil Crop Sci Proc 59:137–141

    Google Scholar 

  • Mathe C, Mosolygo A, Suranyi G, Beke A, Demeter Z, Toth VR (2012) Genotype and explants-type dependent morphogenesis and silicon response of common reed (Phragmites australis) tissue cultures. Aquat Bot 97:57–63

    Article  CAS  Google Scholar 

  • Maxwell FG, Jenkins JN, Parrott WL (1972) Resistance of plants to insects. Adv Agron 24:187–265

    Article  Google Scholar 

  • Meena VD, Dotaniya ML, Coumar V, Rajendiran S, Kundu S, Rao AS (2014) A Case for Silicon fertilization to improve crop yields in tropical soils. Proc Natl Acad Sci India Sect B Biol Sci 84(3):505–518

    Article  CAS  Google Scholar 

  • Mengel K, Kirkby EA (eds) (2001) Principles of plant nutrition. Kluwer Academic Publication, Dordrecht

    Google Scholar 

  • Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255–1261

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Miyake K, Adachi M (1922) Chemiscle untersuchungen uber die widerstandsfahigkeit der reisarten gegen die ‘Imochi-Krankheit’. J Biochem 1:223–247

    Article  CAS  Google Scholar 

  • Miyake K, Ikeda M (1932) Influence of silica application on rice blast. Jpn J Soil Sci Plant Nut 6:53–76

    Google Scholar 

  • Molassiotis A, Sotiropoulos T, Tanou G, Diamantidis G, Therios I (2005) Boron induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM9 (Malus domestica Borkh). Environ Exp Bot 56:54–62

    Article  CAS  Google Scholar 

  • Morikawa CK, Saigusa M (2004) Mineral composition and accumulation of silicon in tissues of blueberry (Vaccinum corymbosus cv. Bluecrop) cuttings. Plant Soil 258:1–8

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapidgrowth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Neumann D, Nieden U (2001) Silicon and heavy metal tolerance of higher plants. Phytochemistry 56:685–692

    Article  CAS  PubMed  Google Scholar 

  • Nhan PP, Dong NT, Nhan HT, Chi NTM (2012) Effects of OryMaxSL and Siliysol MS on growth and yield of MTL560 rice. World Appl Sci J 19(5):704–709

    Google Scholar 

  • Parry DW, Kelso M (1975) The distribution of silicon deposits in the root Molina caerulea (L.) Moench and Sorghum bicolor (L.) Moench. Ann Bot 39:995–1001

    Article  CAS  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phytobiochemical responses of plants – a review. Plant Soil Environ 54(3):89–99

    CAS  Google Scholar 

  • Pereira SH, Korndörfer GH, Vidal ADA, Camargo MSD (2004) Silicon sources for rice crop. Sci Agric 61:522–528

    Article  Google Scholar 

  • Perez-Alfocea F, Balibrea ME, Santa Cruz A, Estan MT (1996) Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant Soil 180:251–257

    Article  CAS  Google Scholar 

  • Pociecha E, Kooecielniak J, Filek W (2008) Effects of root flooding and stage of development on the growth and photosynthesis of field bean (Vicia faba L. minor). Acta Physiol Plant 30:529–535

    Article  CAS  Google Scholar 

  • Powell JJ, McNaughton SA, Jugdaohsingh R, Anderson SH, Dear J (2005) A provisional database for the silicon content of foods in the United Kingdom. Braz J Nutr 94:804–812

    Article  CAS  Google Scholar 

  • Prabagar S, Hodson MJ, Evans DE (2011) Silicon amelioration of aluminum toxicity and cell death in suspension cultures of Norway spruce (Picea abies L.) Environ ExpBot 70:266–276

    CAS  Google Scholar 

  • Qing W, Huiying H, Jinwen Z (2005) Effect of exogenous silicon and proline on potato plantlet in vitro under salt stress. China Vegetables 9:16–18

    Google Scholar 

  • Rabindra B, Gowda SS, Gowda KTP, Rajsppa HK (1981) Blast disease as influenced by silicon in some rice varieties. Curr Ther Res 10:82–83

    Google Scholar 

  • Rana A, Masood A (2002) Heavy metal toxicity: effect on plant growth and metal uptake by wheat, and on free living Azotobacter. Water Air Soil Pollut 138:165–180

    Article  Google Scholar 

  • Richmond KE, Sussman M (2003) Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6:268–272

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues FA, McNally DJ, Datnoff LE, Jones JB, Labbé C, Benhamou N, Menzies JG, Bélanger RR (2004) Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopahology 94:177–183

    Article  CAS  Google Scholar 

  • Rybus-Zaj CM, Kubioe J (2010) Effect of UV-B radiation on antioxidative enzyme activity in cucumber cotyledons. Acta Biol Cracov Ser Bot 52(2):97–102

    Google Scholar 

  • Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H (2012) Mutations in rice (Oryza sativa) heavy metal ATPase2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol 53:213–224

    Article  CAS  PubMed  Google Scholar 

  • Said-Al Ahl HAH, Omer EA, Naguib NY (2009) Effect of water stress and nitrogen fertilizer on herb and essential oil of oregano. Int Agrophys 23:269–275

    CAS  Google Scholar 

  • Salim M, Saxena RC (1992) Aluminum stresses and varietal resistance: effects on white backed plant hopper. Crop Sci 32:212–219

    Article  CAS  Google Scholar 

  • Savant AS, Patit VH, Savant NK (1994) Rice hull ash applied to seedbed reduces dead hearts in transported rice. Int Rice Res Notes 19:21–22

    Google Scholar 

  • Savant NK, Datnoff LE, Snyder GH (1997) Depletion of plant-available silicon in soils: a possible cause of declining rice yields. Comm Soil Sci Plant Anal 28:1245–1252

    Article  CAS  Google Scholar 

  • Sawant AS, Patil VH, Savant NK (1994) Rice hull ash applied to seebold reduces dead hearts in transplanted rice. Int Rice Res Notes 19(4):21–22

    Google Scholar 

  • Schmidt RE, Zhang X, Chalmers DR (1999) Response of photosynthesis and superoxide dismutase to silica applied to creeping bentgrass grown under two fertility levels. J Plant Nutr 22:1763–1773

    Article  CAS  Google Scholar 

  • Shannon MC (1984) Breeding, selection, and the genetics of salt tolerance. In: Staples RC (ed) Salinity tolerance in plants: strategies for crop improvement. Wiley, New York, pp 231–254

    Google Scholar 

  • Shen X, Zhou Y, Duan L, Li Z, Eneji AE, Li J (2010) Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J Plant Physiol 167:1248–1252

    Article  CAS  PubMed  Google Scholar 

  • Shi QH, Bao ZY, Zhu ZJ, He Y, Qian Q, Yu JQ (2005) Silicon mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry 66:1551–1559

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Zhang Y, Han W, Feng R, Hu Y, Guo J, Gong H (2016) Silicon enhances water stress tolerance by Improving root hydraulic conductance in Solanum lycopersicum L. Front Plant Sci 22:196–215

    Google Scholar 

  • Sivanesan I, Jeong BR (2014) Silicon promotes adventitious shoot regeneration and enhances salinity tolerance of Ajuga multiflora Bunge by altering activity of antioxidant enzyme. Sci World J 2014:521703. 10 p http://dx.doi.org/10.1155/2014/521703

    Google Scholar 

  • Sivanesan I, Park S (2014) The role of silicon in plant tissue culture. Front Plant Sci 5:571–588

    Article  PubMed  PubMed Central  Google Scholar 

  • Soares JDR, Pasqual M, Rodrigues FA, Villa F, de Araujo AG (2011) Silicon sources in the micropropagation of the Cattleya group orchid. Acta Sci Agron 33:503–507

    CAS  Google Scholar 

  • Sokolova TA (1985) The clay minerals in the humid regions of USSR (in Russian). Nauka Press, Novosibirsk

    Google Scholar 

  • Soundararajan P, Sivanesan I, Jo EH, Jeong BR (2013) Silicon promotes shoot proliferation and shoot growth of Salvia splendens under salt stress in vitro. Hortic Environ Biotechnol 54:311–318

    Article  CAS  Google Scholar 

  • Soylemezoglu G, Demir K, Inal A, Gunes A (2009) Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Sci Hortic 123:240–246

    Article  CAS  Google Scholar 

  • Song A, Li Z, Zhang J, Xue G, Fan F, Liang Y (2009) Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defence capacity. J Hazard Mater 172(1):74–83

    Article  CAS  PubMed  Google Scholar 

  • Sposito G (1989) The chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • Sujatha G, Reddy GPV, Murthy MMK (1987) Effect of certain biochemical factors on expression of resistance of rice varities to brown plant hopper (Nilaparvata lugens Stal). J Res APAU 15(2):124–128

    Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Takahashi E, Miyake Y (1977) Silica and plant growth. In: Proceedings international seminar on environment and fertility management in intensive agriculture (SEFMIA), Tokyo, Japan, pp 603–611

    Google Scholar 

  • Tamai K, Ma JF (2003) Characterization of silicon uptake by rice roots. New Phytol 158:431–436

    Article  CAS  Google Scholar 

  • Tanaka A, Park YD (1966) Significance of the absorption and distribution of silica in the rice plant. Soil Sci 12:191–195

    CAS  Google Scholar 

  • Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011) Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci U S A 108:20959–20964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Bockhaven J, De Vleesschauwer D, Höfte M (2013) Towards establishing broad-spectrum disease resistance in plants :silicon leads the way. J Exp Bot 64:1281–1293

    Article  PubMed  CAS  Google Scholar 

  • Van Soest PJ (2006) Rice straw, the role of silica and treatments to improve quality. Anim Feed Sci Technol 130:137–171

    Article  CAS  Google Scholar 

  • Vintikova H (1964) A contribution to study on efficiency of silicate bacteria. Rostl Vyr 37:1219–1228

    Google Scholar 

  • Volk RJ, Kahn RP, Weintraub RL (1958) Silicon content of the rice plant as a factor in influencing its resistance to infection by the rice blast fungus, Piricularia oryzae. Phytopathology 48:121–178

    Google Scholar 

  • Voogt W, Sonneveld C (2001) Silicon in horticultural crops in soilless culture. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, New York, pp 115–131

    Chapter  Google Scholar 

  • Wadham MD, Parry PW (1981) The silicon content of Oryza sativa L. and its effect on the grazing behaviour of Agriolimax reticulates. Ann Bot 48:399–402

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wiese H, Nikolic M, Romheld V (2007) The apoplast of higher plants: compartment of storage, transport and reactions. In: Sattelmacher B, Horst WJ (eds) Silicon in plant nutrition. Springer, Dordrecht, pp 33–47

    Google Scholar 

  • Winslow MD (1992) Silicon, disease resistance and yield of rice genotypes under upland cultural conditions. Crop Sci 32:1208–1213

    Article  CAS  Google Scholar 

  • Wu QS, Wan XY, Sub N, Cheng ZJ, Wang JK, Lei CL, Zhang X, Jiang L, Ma JF, Wan JM (2006) Genetic dissection of silicon uptake ability in rice (Oryza sativa L.) Plant Sci 171:441–448

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Guo J, Hu Y, Gong H (2015) Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress. Front Plant Sci 16:453–467

    Google Scholar 

  • Yamaji N, Ma JF (2007) Spatial Distribution and Temporal Variation of the rice silicon transporter Lsi1. Plant Physiol 143:1306–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaji N, Chiba Y, Ueno NM, Ma JF (2012) Functional Characterization of a Silicon Transporter gene implicated in silicon distribution in barley. Plant Physiol 160:1491–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66:73–86

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Wang S, Liu P, Wang W, Cao D, Deng X, Zhang S (2014) Silicon-mediated changes in polyamine and 1-aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L. Plant Physiol Biochem 80:268–277

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S (1975) The physiology of silicon in rice. TEC Bull 25:24–27

    Google Scholar 

  • Yoshida S, Ohnishi Y, Kitagishi K (1962) Histochemistry of silicon in rice plant. III. The presence of cuticle-silica double layer in the epidermal tissue. Soil Sci Plant Nutr 8:1–5

    Google Scholar 

  • Zancan S, Suglia I, La Rocca N, Ghisi R (2008) Effects of UV-B radiation on antioxidant parameters of iron-deficient barley plants. Environ Exp Bot 63:71–79

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34:455–472

    Article  CAS  Google Scholar 

  • Ziv M (2010) Silicon effects on growth acclimatization and stress tolerance of bioreactor cultured Ornitho galumdubium plants. Acta Hortic 865:29–36

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyan Ranjan Rout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Swain, R., Rout, G.R. (2017). Silicon in Agriculture. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-58679-3_8

Download citation

Publish with us

Policies and ethics