Skip to main content

Methods for Rapid Testing of Plant and Soil Nutrients

  • Chapter
  • First Online:
Sustainable Agriculture Reviews

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 25))

Abstract

Low nutrient level s in soil are a recognized limitation to crop production . Yet, farmers in certain agro-ecoregions either do not apply fertilizers, apply inadequate amounts, or apply the wrong fertilizers due to a mismatch with the nutrient needs of their soil. In many cases, lack of availability of wet chemistry capabilities contribute to farmers in less developed regions not routinely conducting soil tests prior to fertilizer application. Fortunately, novel technologies and commercial products have become available, providing on-farm, timely, and relatively inexpensive soil and plant nutrient analytical services.

Here, we identified rapid soil and plant nutrient testing technologies, currently in the market, based on a web search, and evaluated the basis for deploying them as alternative nutrient analytical systems. Thirty six of such applications were identified, out of which only 5 are dedicated solely to plant analysis. Collectively, the functioning mechanisms of most of the products were found to be based on colorimetry, spectroscopy or sensor technology. However, in comparison with traditional wet chemistry methods, the accuracy of the products is yet to be fully resolved, given the paucity of data in that regard. Subsequently, we reflected upon the effectiveness of the products in generating relevant information to guide rationale fertilizer recommendations, and in that context discussed the concept of balanced fertilizer regimes that consider soil levels of different nutrients; associated soil factors that determine nutrient bioavailability and actual uptake by crops; and complex farming systems that may undermine the precision and efficiency of fertilizer application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam S, Kamei S, Kawai S (2001) Effect of iron deficiency on the chemical composition of the xylem sap of barley. Soil Sci Plant Nutr 47:643–649. doi:101080/00380768200110408428

    Google Scholar 

  • Alloway BJ (2008) Micronutrient deficiencies in global crop production. Springer, Dordrecht, 129 pp. doi:10.1007/978-1-4020-6860-7

  • Anderson G, Chen W, Bell R, Brennan R (2013) Critical levels for soil P, K and S for near maximum wheat, canola and lupin production in Western Australia. WA Crop Updates, GRDC, Department of Agriculture and Food, Australia

    Google Scholar 

  • Attanandana T, Verapattananirund P, Yost R (2008) Refining and disseminating site-specific nutrient management technology in Thailand. Agron Sustain Dev 28:291–297. doi:10.1051/agro:2008006

    Article  Google Scholar 

  • Baligar VC, Fageria NK, He ZL (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32:921–950. doi:10.1081/CSS-100104098

    Article  CAS  Google Scholar 

  • Bamsey M, Graham T, Thompson C, Berinstain A, Scott A, Dixon M (2012) Ion-specific nutrient management in closed systems: the necessity for ion-selective sensors in terrestrial and space-based agriculture and water management systems. Sensors 12:13349–13392. doi: 103390/s121013349

    Google Scholar 

  • Bindraban PS (1999) Impact of canopy nitrogen profile in wheat on growth. Field Crops Res 63: 63–77. doi:101016/S0378-4290(99)00030-1

    Google Scholar 

  • Bindraban PS, Dimkpa CO, Nagarajan L, Roy AH, Rabbinge R (2015) Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol Fertil Soils 51:897–911. doi:10.1007/s00374-015-1039-7

    Article  CAS  Google Scholar 

  • Bocchini M, Bartucca ML, Ciancaleoni S, Mimmo T, Cesco S, Pii Y, Albertini E, Del Buono D (2015) Iron deficiency in barley plants: phytosiderophore release, iron translocation, and DNA methylation. Frontiers Plant Sci 6:514. doi:org/103389/fpls201500514

    Google Scholar 

  • Cakmak I (2009) Enrichment of fertilizers with zinc: an excellent investment for humanity and crop production in India. J Trace Elements Med Biol 29:281–289. doi:10.1016/j.jtemb.2009.05.002

    Article  Google Scholar 

  • Dambrine E, Martin F, Carisey N, Granier A, Hällgren J-E, Bishop K (1995) Xylem sap composition: A tool for investigating mineral uptake and cycling in adult spruce. Plant Soil 168:233–241. doi:10.1007/BF00029333

    Article  Google Scholar 

  • Daur I, Sepetoglu H, Sindel B (2011) Dynamics of faba bean growth and nutrient uptake and their correlation with grain yield. J Plant Nutr 34:1360–1371. doi: 101080/019041672011580878

    Google Scholar 

  • De-la-Peña C, Loyola-Vargas VM (2014) Biotic interactions in the rhizosphere: a diverse cooperative enterprise for plant productivity. Plant Physiol 166:701–719. doi:10.1104/pp.114.241810

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimkpa CO, Bindraban PS (2016) Micronutrients fortification for efficient agronomic production. Agron Sustain Dev 36:1–26. doi:101007/s13593-015-0346-6

    Google Scholar 

  • Dimkpa CO, Hansen T, Stewart J, McLean JE, Britt DW, Anderson AJ (2015) ZnO nanoparticles and root colonization by a beneficial pseudomonad influence metal responses in bean (Phaseolus vulgaris). Nanotoxicol 9:271–278. doi:10.3109/17435390.2014.900583

    Article  CAS  Google Scholar 

  • Dotaniya ML, Meena VD (2015) Rhizosphere effect on nutrient availability in soil and its uptake by plants: A Review. Proc Natl Acad Sci India Sect B Biol Sci 85:1–12. doi:10.1007/s40011-013-0297

    Article  CAS  Google Scholar 

  • Duffner A, Hoffland E, Weng L, Van der Zee SEATM (2013) Predicting zinc bioavailability to wheat improves by integrating pH dependent nonlinear root surface adsorption. Plant Soil 373:919930. doi:10.1007/s11104-013-1845-3

    Article  Google Scholar 

  • Duffner A, Weng L, Hoffland E, Van der Zee SEATM (2014) Multi-surface modeling to predict free zinc ion concentrations in low-zinc soils. Environ Sci Technol 48:5700–5708. doi:10.1021/es500257e

    Article  CAS  PubMed  Google Scholar 

  • Faber BA, Downer AJ, Holstege D, Mochizuki MJ (2007) Accuracy varies for commercially available soil test kits analyzing nitrate-nitrogen, phosphorus, potassium and pH. Hort Technol 17:358–362

    CAS  Google Scholar 

  • Fan MS, Zhao FJ, Fairweather-Tait SJ (2008) Evidence of decreasing mineral density in wheat grain over the last 160 years. J Trace Elem Med Biol 22:315–324. doi:10.1016/j.jtemb.2008.07.002

    Article  CAS  PubMed  Google Scholar 

  • García A, Erenas MM, Marinetto ED, Abad CA, de Orbe-Paya I, Palma AJ, Capitán-Vallvey LF (2011) Mobile phone platform as portable chemical analyzer. Sensors Actuators B Chem 156:350–359. doi:10.1016/j.snb.2011.04.045

    Article  Google Scholar 

  • Geisseler D, Scow KM (2014) Long-term effects of mineral fertilizers on soil microorganisms–A review. Soil Bio Biochem 75:54–63. doi:10.1016/j.soilbio.2014.03.023

    Article  CAS  Google Scholar 

  • Ghasemi M, Arzani K, Yadollahi A, Ghasemi S, Sarikhanikhorrami S (2011) Estimate of leaf chlorophyll and nitrogen content in Asian pear (Pyrus serotina Rehd) by CCM-200. Not Sci Biol 3:91–94

    CAS  Google Scholar 

  • Heckman JR (2006) Soil fertility test interpretation: phosphorus, potassium, magnesium and calcium. Rutgers Cooperative Extension Fact Sheet FS719

    Google Scholar 

  • Iqbal Z, Bjorklund RB (2011) Colorimetric analysis of water and sand samples performed on a mobile phone. TALANTA 84:1118–1123. doi:10.1016/j.talanta.2011.03.016

    Article  CAS  PubMed  Google Scholar 

  • Janik LJ, Skjemstand JO (1995) Characterization and analysis of soils using midinfrared partial least-squares. 2. Correlations with some laboratory data. Australian J Soil Res 33:637–650. doi:10.1071/SR9950637

    Article  CAS  Google Scholar 

  • Janik LJ, Skjemstand JO, Raven MD (1995) Characterization and analysis of soils using midinfrared partial least-squares. 1. Correlations with XRF-determined major-element composition. Australian J Soil Res 33:621–636. doi:10.1071/SR9950621

    Article  CAS  Google Scholar 

  • Janik LJ, Merry RH, Skjemstad JO (1998) Can mid infrared diffuse reflectance analysis replace soil extractions? Australian J Exp Agric 38:681–696. doi:10.1071/EA97144

    Article  Google Scholar 

  • Jones DL, Cross P, Withers PJA, DeLuca TH, Robinson DA, Quilliam RS, Harris IM, Chadwick DR, Edwards-Jones G (2013) REVIEW: nutrient stripping: the global disparity between food security and soil nutrient stocks. J Applied Ecol 50:851–862. doi:10.1111/1365-2664.12089

    Article  Google Scholar 

  • Joy EJM, Stein AJ, Young SD, Ander EL, Watts MJ, Broadley MR (2015) Zinc-enriched fertilisers as a potential public health intervention in Africa. Plant Soil 389:1–24

    Google Scholar 

  • Kaiser BN, Gridley KL, Brady JN, Phillips T, Tyerman SD (2005) The role of molybdenum in agricultural plant production. Ann Bot 96:745–754. doi:10.1093/aob/mci226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser DE, Lamb JA, Rosen C (2013) Plant analysis sampling and interpretation University of Minnesota Extension FO-3176-B

    Google Scholar 

  • Keuskamp DH, Kimber R, Bindraban PS, Dimkpa CO, Schenkeveld WDC (2015) Plant exudates for nutrient uptake. VFRC Report 2015/4. Virtual Fertilizer Research Center, Washington, DC, USA, p 53

    Google Scholar 

  • Kihara J, Nziguheba G, Zingore S, Coulibaly A, Esilaba A, Kabambe V, Njoroge S, Palm C, Huising J (2016) Understanding variability in crop responses to fertilizer and amendments in sub-Saharan Africa. Agric Ecosys Environ 229:1–12. doi:10.1016/j.agee.2016.05.012

    Article  CAS  Google Scholar 

  • Koele N, Kuyper TW, Bindraban PS (2014) Beneficial organisms for nutrient uptake VFRC Report 2014/1. Virtual Fertilizer Research Center, Washington, DC, p 63

    Google Scholar 

  • Koenig R (2002) Nitrogen, sulfur, potassium and phosphorus fertilization in alfalfa: when are they necessary? In: Proceedings, Western Alfalfa and Forage Conference, December 11–13, 2002, Spraks, NV, UC Cooperative Extension, University of California, Davis, 95616

    Google Scholar 

  • Kumar V, Verma KS, (1997) Relationship between nutrient element content of the index leaf and cane yield and juice quality of sugarcane genotypes Comm Soil Sci Plant Anal 28:1021–1032. doi:101080/00103629709369851

    Google Scholar 

  • Kuzhivilayil SJ, Ranidran CS, George J (2015) Soil test and plant tissue analysis as diagnostic tools for fertilizer recommendations for cassava in an ultisol. Comm Soil Sci Plant Anal 46:1607–1627. doi:10.1080/00103624.2015.1043442

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198:656–669. doi:10.1111/nph.12235

    Article  CAS  PubMed  Google Scholar 

  • Laboski C (downloaded May, 2016) Soil sampling, fertilizer recommendations, and economics of fertilization. Department of Soil Science, University of Wisconsin, Madison. http://www.soils.wisc.edu/extension/materials/Sampling_Fert_Recs_Econ.pdf

  • Maggini R, Carmassi G, Incrocci L, Pardossi A (2010) Evaluation of quick test kits for the determination of nitrate, ammonium and phosphate in soil and hydroponic nutrient solutions. Agrochimica 53:331–341

    Google Scholar 

  • Marenya P, Barrett C (2009) Soil quality and fertilizer use rates among smallholder farmers in Western Kenya. Agric Econ 40:561–572. doi:10.1111/j.1574-0862.2009.00398

    Article  Google Scholar 

  • Marschner P (2012) Marschner’s Mineral Nutrition of Higher Plants, 3rd edn. Elsevier Publishers, Oxford

    Google Scholar 

  • Mayer AM (1997) Historical changes in the mineral content of fruits and vegetables. British Food J 99:207–211. doi:10.1108/00070709710181540

    Article  Google Scholar 

  • Michalak I, Witek-Krowiak A, Chojnacka K, Bhatnagar A (2015) Advances in biosorption of microelements – the starting point for the production of new agrochemicals. Rev Inorg Chem 35:115–133. doi:10.1515/revic-2015-0003

    Article  CAS  Google Scholar 

  • Milani N, Hettiarachchi GM, Kirby JK, Beak DG, Stacey SP, McLaughlin MJ (2015) Fate of zinc oxide nanoparticles coated onto macronutrient fertilizers in an alkaline calcareous soil. PLoS ONE 10:e0126275. doi:10.1371/journal.pone.0126275

    Article  PubMed  PubMed Central  Google Scholar 

  • Monreal CM, DeRosa M, Mallubhotla SC, Bindraban PS, Dimkpa C (2016) Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol Fertil Soils 51:897–911

    Google Scholar 

  • Moonrungsee N, Pencharee S, Jakmunee J (2015) Colorimetric analyzer based on mobile phone camera for determination of available phosphorus in soil. Talanta 136:204–209. doi:10.1016/j.talanta.2015.01.024

    Article  CAS  PubMed  Google Scholar 

  • Oliver MA, Gregory PJ (2015) Soil, food security and human health: a review. Euro J Soil Sci 66:257–276. doi:10.1111/ejss.12216

    Article  Google Scholar 

  • Pradhan AK, Beura KS, Das R, Padhan D, Hazra GC,Mandal B, De N, Mishra VN, Polara KB, Sharma S (2015) Evaluation of extractability of different extractants for zinc and copper in soils under long-term fertilization. Plant Soil Environ 61:227–233. doi:1017221/971/2014-PSE

    Google Scholar 

  • Rietra RPJJ, Heinen M, Dimkpa CO, Bindraban PS (2015) Effects of nutrient antagonism and synergism on fertilizer use. VFRC report 2015/5. Virtual Fertilizer Research Center, Washington, DC, USA, p 42

    Google Scholar 

  • Sattari SZ, Van Ittersum MK, Bouwman AF, Smit AL, Janssen BH (2014) Crop yield response to soil fertility and N, P, K inputs in different environments: Testing and improving the QUEFTS model. Field Crops Res 157:35–46. doi:10.1016/j.fcr.2013.12.005

    Article  Google Scholar 

  • Shaaban MM, El-Nabarawy MA, El-Zanaty AA, El-Nour EAAA (2002) Evaluation of magnesium and iron nutritional status in some monocot and dicot crop plants using a portable chlorophyll meter. Pak J Biol Sci 5:1014–1016. doi:10.3923/pjbs.2002.1014.1016

    Article  Google Scholar 

  • Shepherd KD, Walsh MG (2007) Infrared spectroscopy – enabling evidence-based diagnostic surveillance approach to agricultural and environmental management in developing countries. J Near Infrared Spectrosc 15:1–19. doi:http://dx.doi.org/10.1255/jnirs.716

  • Shukla AK, Babu PS, Tiwari PK, Prakash C, Patra AK, Patnaik MC (2015) Mapping and frequency distribution of current micronutrient deficiencies in soils in Telangana for their precise management. Indian J Fert 11:33–43

    Google Scholar 

  • Sobral LF, Smyth JT, Fageria NK, Stone LF (2013) Comparison of copper, manganese and zinc extraction with Mehlich 1, Mehlich 3 and DTPA solutions for soils of the Brazilian coastal tablelands. Comm Soil Sci Plant Anal 44:2507–2513. doi:10.1080/00103624.2013.812731

    Article  CAS  Google Scholar 

  • Stewart WM (2002) Fertilizer contributions to crop yield. News and Views, A regional newsletter published by the Potash & Phosphate Institute. https://www.ipni.net/ppiweb/ppinews.nsf/$webcontents/7DE814BEC3A5A6EF85256BD80067B43C/$file/Crop+Yield.pdf

    Google Scholar 

  • Terhoeven-Urselmans T, Spaargaren O, Shepherd KD (2010) Prediction of soil fertility properties from globally distributed soil mid-infrared spectral library. Soil Sci Soc Amer J 74:1792–1799. doi:10.2136/sssaj2009.0218

    Article  CAS  Google Scholar 

  • Vanlauwe B, Descheemaeker K, Giller K, Huising J, Merckx R, Nziguheba G, Wendt J, Zingore S (2014) Integrated soil fertility management in Sub-Saharan Africa: unravelling local adaptation. Soil Discuss 1:1239–1286. doi:10.5194/soild-1-1239-2014

    Article  Google Scholar 

  • Vasconcelos MW, Grusak MA (2014) Morpho-physiological parameters affecting iron deficiency chlorosis in soybean (Glycine max L). Plant Soil 374:161–172. doi:101007/s11104-013-1842-6

    Google Scholar 

  • VFRC (2016) Fundamentals for systems change toward innovative fertilizers VFRC 2010-2015: An Update Report. http://wwwjoomagcom/magazine/vfrc-publications/0287483001452718630

    Google Scholar 

  • Voortman R, Bindraban PS (2015) Beyond N and P: toward a land resource ecology perspective and impactful fertilizer interventions in Sub-Saharan Africa. VFRC report 2015/1. Virtual Fertilizer Research Center, Washington, DC, USA, p 49

    Google Scholar 

  • White PJ, George TS, Dupuy LX, Karley AJ, Valentine TA, Wiesel L, Wishart J (2013) Root traits for infertile soils. Frontiers Plant Sci 4:193. doi:10.3389/fpls.2013.00193

    Article  Google Scholar 

  • Zhu Q, Riley WJ, Tang J, Koven CD (2016) Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization and example applications in several tropical forests. Biogeosci Discuss 12:4057–4106. doi:10.5194/bg-13-341-2016

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this work is provided, in part, by the United States Agency for International Development (USAID). We would like to thank Susan Yiapan for assistance with internal editorial review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Dimkpa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dimkpa, C., Bindraban, P., McLean, J.E., Gatere, L., Singh, U., Hellums, D. (2017). Methods for Rapid Testing of Plant and Soil Nutrients. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-58679-3_1

Download citation

Publish with us

Policies and ethics