Advertisement

Stochastic Analysis in Infinite Dimensions

  • Sergey V. Lototsky
  • Boris L. Rozovsky
Chapter
Part of the Universitext book series (UTX)

Abstract

This chapter contains somewhat abstract but necessary, material on functional analysis and stochastic calculus. To save time, one can move on to the following chapters and come back as necessary.

References

  1. 4.
    N. Aronszajn, Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 6.
    R.M. Balan, B.G. Ivanoff, A Markov property for set-indexed processes. J. Theor. Probab. 15(3), 553–588 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 13.
    V.I. Bogachev, Gaussian Measures. Mathematical Surveys and Monographs, vol. 62 (American Mathematical Society, Providence, 1998)Google Scholar
  4. 24.
    P.-L. Chow, Stochastic Partial Differential Equations. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series (Chapman & Hall/CRC, Boca Raton, 2007)zbMATHGoogle Scholar
  5. 31.
    G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 44 (Cambridge University Press, Cambridge, 1992)Google Scholar
  6. 34.
    R.C. Dalang, J.B. Walsh, The sharp Markov property of Lévy sheets. Ann. Probab. 20(2), 591–626 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 35.
    R.C. Dalang, J.B. Walsh, The sharp Markov property of the Brownian sheet and related processes. Acta Math. 168(3–4), 153–218 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 42.
    N. Dunford, J.T. Schwartz, Linear Operators, I: General Theory (Wiley-Interscience, Chichester, 1988)zbMATHGoogle Scholar
  9. 43.
    N. Dunford, J.T. Schwartz, Linear Operators, II: Spectral Theory (Wiley-Interscience, Chichester, 1988)zbMATHGoogle Scholar
  10. 50.
    L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, vol. 19 (American Mathematical Society, Providence, 1998)Google Scholar
  11. 61.
    I.M. Gelfand, N.Ya. Vilenkin, Generalized Functions, vol. 4: Applications of Harmonic Analysis (Academic, New York, 1964)Google Scholar
  12. 92.
    K. Iwata, The inverse of a local operator preserves the Markov property. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19(2), 223–253 (1992)Google Scholar
  13. 99.
    O. Kallenberg, R. Sztencel, Some dimension-free features of vector-valued martingales. Probab. Theory Relat. Fields 88, 215–247 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 103.
    I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, 2nd edn. Graduate Texts in Mathematics, vol. 113 (Springer, New York, 1991)Google Scholar
  15. 105.
    K. Karhunen, Zur Spektraltheorie stochastischer Prozesse. Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys. 34, 1–7 (1946)MathSciNetzbMATHGoogle Scholar
  16. 106.
    K. Karhunen, Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys. 37, 3–79 (1947)MathSciNetzbMATHGoogle Scholar
  17. 117.
    S.G. Kreĭn, Yu.Ī. Petunı̄n, E.M. Semënov, Interpolation of Linear Operators. Translations of Mathematical Monographs, vol. 54 (American Mathematical Society, Providence, 1982)Google Scholar
  18. 118.
    N.V. Krylov, Introduction to the Theory of Diffusion Processes. Translations of Mathematical Monographs, vol. 142 (American Mathematical Society, Providence, 1995)Google Scholar
  19. 122.
    N.V. Krylov, B.L. Rozovskii, Stochastic evolution equations. J. Sov. Math. 14(4), 1233–1277 (1981). Reprinted in Stochastic Differential Equations: Theory and Applications, ed. by S.V. Lototsky, P.H. Baxendale. Interdisciplinary Mathematical Sciences, vol. 2 (World Scientific, 2007), pp. 1–70Google Scholar
  20. 125.
    H. Kunita, Stochastic Flows and Stochastic Differential Equations. Cambridge Studies in Advanced Mathematics, vol. 24 (Cambridge University Press, Cambridge, 1997)Google Scholar
  21. 126.
    H. Künsch, Gaussian Markov random fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26(1), 53–73 (1979)MathSciNetzbMATHGoogle Scholar
  22. 129.
    P.D. Lax, A.N. Milgram, Parabolic equations, in Contributions to the Theory of Partial Differential Equations. Annals of Mathematics Studies, vol. 33 (Princeton University Press, Princeton, 1954), pp. 167–190Google Scholar
  23. 131.
    P. Lévy, Sur le mouvement brownien dépendant de plusieurs paramètres. C. R. Acad. Sci. Paris 220, 420–422 (1945)MathSciNetzbMATHGoogle Scholar
  24. 138.
    R.Sh. Liptser, A.N. Shiryaev, Theory of Martingales. Mathematics and Its Applications (Soviet Series), vol. 49 (Kluwer Academic, Dordrecht, 1989)Google Scholar
  25. 143.
    M. Loève, Sur les fonctions aléatoires stationnaires de second ordre. Revue Sci. 83, 297–303 (1945)MathSciNetzbMATHGoogle Scholar
  26. 144.
    M. Loève, Quelques propriétés des fonctions aléatoires de second ordre. C. R. Acad. Sci. Paris 222, 469–470 (1946)MathSciNetzbMATHGoogle Scholar
  27. 157.
    H.P. McKean, Brownian motion with a several-dimensional time. Teor. Verojatnost. i Primenen. 8, 357–378 (1963)MathSciNetzbMATHGoogle Scholar
  28. 159.
    M. Métivier, J. Pellaumail, Stochastic Integration (Academic, New York, 1980)zbMATHGoogle Scholar
  29. 171.
    G.J. Murphy, C -Algebras and Operator Theory (Academic, New York, 1990)zbMATHGoogle Scholar
  30. 174.
    D. Nualart, Propriedad de markov para functiones aleatorias Gaussianas. Cuadern. Estadistica Mat. Univ. Granada Ser. A Prob. 5, 30–43 (1980)Google Scholar
  31. 175.
    D. Nualart, The Malliavin Calculus and Related Topics, 2nd edn. (Springer, New York, 2006)zbMATHGoogle Scholar
  32. 188.
    L.D. Pitt, A Markov property for Gaussian processes with a multidimensional parameter. Arch. Rational Mech. Anal. 43, 367–391 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 191.
    C. Prévôt, M. Röckner, A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1905 (Springer, Berlin, 2007)Google Scholar
  34. 192.
    P. Protter, Stochastic Integration and Differential Equations, 2nd edn. (Springer, New York, 2004)zbMATHGoogle Scholar
  35. 199.
    B.L. Rozovskii, Stochastic Evolution Systems. Mathematics and Its Applications (Soviet Series), vol. 35 (Kluwer Academic, Dordrecht, 1990)Google Scholar
  36. 200.
    F. Russo, Étude de la propriété de Markov étroite en relation avec les processus planaires à accroissements indépendants, in Seminar on Probability, XVIII. Lecture Notes in Mathematics, vol. 1059 (Springer, Berlin, 1984), pp. 353–378Google Scholar
  37. 208.
    M.A. Shubin, Pseudo-Differential Operators and Spectral Theory, 2nd edn. (Springer, New York, 2001)CrossRefzbMATHGoogle Scholar
  38. 223.
    J.B. Walsh, An introduction to stochastic partial differential equations, in ’Ecole d’été de probabilités de Saint-Flour, XIV—1984. Lecture Notes in Mathematics, vol. 1180 (Springer, Berlin, 1986), pp. 265–439Google Scholar
  39. 224.
    J. Weidmann, Linear Operators in Hilbert Spaces. Graduate Texts in Mathematics, vol. 68 (Springer, New York, 1980)Google Scholar
  40. 227.
    E. Wong, Homogeneous Gauss-Markov random fields. Ann. Math. Stat. 40, 1625–1634 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 231.
    K. Yosida, Functional Analysis, 6th edn. (Springer, Berlin, 1980)zbMATHGoogle Scholar
  42. 232.
    E. Zeidler, Nonlinear Functional Analysis and Its Applications, I: Fixed-Point Theorems (Springer, New York, 1986)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sergey V. Lototsky
    • 1
  • Boris L. Rozovsky
    • 2
  1. 1.Department of MathematicsUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations