Advertisement

Introduction

  • Sergey V. Lototsky
  • Boris L. Rozovsky
Chapter
Part of the Universitext book series (UTX)

Abstract

We use the same notation x for a point in the real line \(\mathbb{R}\) or in a d-dimensional Euclidean space \(\mathbb{R}^{\mathrm{d}}\). For \(x = (x_{1},\ldots,x_{\mathrm{d}}) \in \mathbb{R}^{\mathrm{d}}\), \(\vert x\vert = \sqrt{x_{1 }^{2 } +\ldots +x_{\mathrm{d} }^{2}}\); for \(x,y \in \mathbb{R}^{\mathrm{d}}\), xy = x 1 y 1 + + x d y d. Integral over the real line can be written either as \(\int _{\mathbb{R}}\) or as + . Sometimes, when there is no danger of confusion, the domain of integration, in any number of dimensions, is omitted altogether.

References

  1. 2.
    G.E. Andrews, R. Askey, R. Roy, Special Functions. Encyclopedia of Mathematics and Its Applications, vol. 71 (Cambridge University Press, Cambridge, 1999)Google Scholar
  2. 5.
    A. Bain, D. Crisan, Fundamentals of Stochastic Filtering. Stochastic Modelling and Applied Probability, vol. 60 (Springer, New York, 2009)Google Scholar
  3. 9.
    R. Bellman, The stability of solutions of linear differential equations. Duke Math. J. 10, 643–647 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 10.
    L. Bertini, G. Giacomin, Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183(3), 571–607 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 12.
    D. Blömker, Amplitude Equations for Stochastic Partial Differential Equations. Interdisciplinary Mathematical Sciences, vol. 3 (World Scientific Publishing, Hackensack, 2007)Google Scholar
  6. 18.
    D.L. Burkholder, R.F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124, 249–304 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 19.
    D.L. Burkholder, B.J. Davis, R.F. Gundy, Integral inequalities for convex functions of operators on martingales, in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, Berkeley, CA, 1970/1971), Vol. II: Probability Theory (University of California Press, Berkeley, CA, 1972), pp. 223–240Google Scholar
  8. 21.
    R.A. Carmona, B. Rozovskii (eds.), Stochastic Partial Differential Equations: Six Perspectives. Mathematical Surveys and Monographs, vol. 64 (American Mathematical Society, Providence, 1999)Google Scholar
  9. 22.
    R.A. Carmona, M.R. Tehranchi, Interest Rate Models: An Infinite Dimensional Stochastic Analysis Perspective. Springer Finance (Springer, Berlin, 2006)zbMATHGoogle Scholar
  10. 24.
    P.-L. Chow, Stochastic Partial Differential Equations. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series (Chapman & Hall/CRC, Boca Raton, 2007)zbMATHGoogle Scholar
  11. 30.
    R. Cont, Modeling term structure dynamics: an infinite dimensional approach. Int. J. Theor. Appl. Finance 8(3), 357–380 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 31.
    G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 44 (Cambridge University Press, Cambridge, 1992)Google Scholar
  13. 32.
    G. Da Prato, J. Zabczyk, Ergodicity for Infinite-Dimensional Systems. London Mathematical Society Lecture Note Series, vol. 229 (Cambridge University Press, Cambridge, 1996)Google Scholar
  14. 36.
    R. Dalang, D. Khoshnevisan, C. Mueller, D. Nualart, Y. Xiao, A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1962 (Springer, Berlin, 2009). MR 1500166 (2009k:60009)Google Scholar
  15. 47.
    L. Erdős, B. Schlein, H.-T. Yau, Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167(3), 515–614 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 48.
    L. Erdős, B. Schlein, H.-T. Yau, Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential. J. Am. Math. Soc. 22(4), 1099–1156 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 49.
    S.N. Ethier, S.M. Krone, Comparing Fleming-Viot and Dawson-Watanabe processes. Stoch. Process. Appl. 60(2), 171–190 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 50.
    L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, vol. 19 (American Mathematical Society, Providence, 1998)Google Scholar
  19. 52.
    F. Flandoli, Regularity Theory and Stochastic Flows for Parabolic SPDEs. Stochastics Monographs, vol. 9 (Gordon and Breach Science, Yverdon, 1995)Google Scholar
  20. 59.
    L. Gawarecki, V. Mandrekar, Stochastic Differential Equations in Infinite Dimensions with Applications to Stochastic Partial Differential Equations. Probability and Its Applications (New York) (Springer, Heidelberg, 2011). MR 2560625 (2012a:60179)Google Scholar
  21. 65.
    W. Grecksch, C. Tudor, Stochastic Evolution Equations. Mathematical Research, vol. 85 (Akademie-Verlag, Berlin, 1995)Google Scholar
  22. 67.
    T.H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. (2) 20(4), 292–296 (1919)Google Scholar
  23. 70.
    M. Hairer, An Introduction to Stochastic PDEs, http://www.hairer.org/notes/SPDEs.pdf (2009)
  24. 71.
    M. Hairer, A.M. Stuart, J. Voß, P. Wiberg, Analysis of SPDEs arising in path sampling, part I: the Gaussian case. Commun. Math. Sci. 3(4), 587–603 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 72.
    M. Hairer, A.M. Stuart, J. Voß, Analysis of SPDEs arising in path sampling, part II: the nonlinear case. Ann. Appl. Probab. 17(5/6), 1657–1706 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 95.
    J.L.W.V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30(1), 175–193 (1906)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 96.
    A. Jentzen, P.E. Kloeden, Taylor Approximations for Stochastic Partial Differential Equations. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 83 (Society for Industrial and Applied Mathematics, Philadelphia, 2011)Google Scholar
  28. 98.
    O. Juan, R. Kerivena, G. Postelnicu, Stochastic motion and the level set method in computer vision: Stochastic active contours. Int. J. Comput. Vis. 69(1), 7–25 (2006)CrossRefGoogle Scholar
  29. 100.
    G. Kallianpur, Stochastic Filtering Theory. Applications of Mathematics, vol. 13 (Springer, Berlin, 1980)Google Scholar
  30. 102.
    G. Kallianpur, J. Xiong, Stochastic Differential Equations in Infinite-Dimensional Spaces. Institute of Mathematical Statistics Lecture Notes—Monograph Series, vol. 26 (Institute of Mathematical Statistics, Hayward, 1995)Google Scholar
  31. 104.
    M. Kardar, G. Parisi, Y.-C. Zhang, Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56(9), 889–892 (1986)CrossRefzbMATHGoogle Scholar
  32. 108.
    D. Khoshnevisan, Multiparameter Processes: An Introduction to Random Fields. Springer Monographs in Mathematics (Springer, New York, 2002)Google Scholar
  33. 109.
    D. Khoshnevisan, Analysis of Stochastic Partial Differential Equations. CBMS Regional Conference Series in Mathematics, vol. 119 (American Mathematical Society, Providence, 2014)Google Scholar
  34. 114.
    P. Kotelenez, Stochastic Ordinary and Stochastic Partial Differential Equations: Transition from Microscopic to Macroscopic Equations. Stochastic Modelling and Applied Probability, vol. 58 (Springer, New York, 2007)Google Scholar
  35. 118.
    N.V. Krylov, Introduction to the Theory of Diffusion Processes. Translations of Mathematical Monographs, vol. 142 (American Mathematical Society, Providence, 1995)Google Scholar
  36. 122.
    N.V. Krylov, B.L. Rozovskii, Stochastic evolution equations. J. Sov. Math. 14(4), 1233–1277 (1981). Reprinted in Stochastic Differential Equations: Theory and Applications, ed. by S.V. Lototsky, P.H. Baxendale. Interdisciplinary Mathematical Sciences, vol. 2 (World Scientific, 2007), pp. 1–70Google Scholar
  37. 125.
    H. Kunita, Stochastic Flows and Stochastic Differential Equations. Cambridge Studies in Advanced Mathematics, vol. 24 (Cambridge University Press, Cambridge, 1997)Google Scholar
  38. 127.
    T.G. Kurtz, J. Xiong, Particle representations for a class of nonlinear SPDEs. Stoch. Process. Appl. 83(1), 103–126 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 134.
    P.-L. Lions, P.E. Souganidis, Fully nonlinear stochastic partial differential equations. C. R. Acad. Sci. Paris Ser. I 326, 1085–1092 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 137.
    P.-L. Lions, P.E. Souganidis, Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations. C. R. Acad. Sci. Paris Sér. I Math. 331(10), 783–790 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 138.
    R.Sh. Liptser, A.N. Shiryaev, Theory of Martingales. Mathematics and Its Applications (Soviet Series), vol. 49 (Kluwer Academic, Dordrecht, 1989)Google Scholar
  42. 141.
    K. Liu, Stability of Infinite Dimensional Stochastic Differential Equations with Applications. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 135 (Chapman & Hall/CRC, Boca Raton, 2006)Google Scholar
  43. 142.
    W. Liu, M. Röckner, Stochastic Partial Differential Equations: An Introduction. Universitext (Springer, New York, 2015)CrossRefzbMATHGoogle Scholar
  44. 158.
    M. Métivier, Stochastic Partial Differential Equations in Infinite-Dimensional Spaces. Scuola Normale Superiore di Pisa. Quaderni. [Publications of the Scuola Normale Superiore of Pisa] (Scuola Normale Superiore, Pisa, 1988)Google Scholar
  45. 163.
    R. Mikulevicius, B.L. Rozovskii, Stochastic Navier-Stokes equations for turbulent flows. SIAM J. Math. Anal. 35(5), 1250–1310 (2004) (electronic)Google Scholar
  46. 170.
    C. Mueller, R. Tribe, Stochastic P.D.E.’s arising from the long range contact and long range voter processes. Probab. Theory Relat. Fields 102(4), 519–545 (1995)Google Scholar
  47. 175.
    D. Nualart, The Malliavin Calculus and Related Topics, 2nd edn. (Springer, New York, 2006)zbMATHGoogle Scholar
  48. 182.
    S. Omatu, J.H. Seinfeld, Distributed Parameter Systems: Theory and Applications (Clarendon Press, Oxford, 1989)zbMATHGoogle Scholar
  49. 185.
    S. Peszat, J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise. Encyclopedia of Mathematics and Its Applications, vol. 113 (Cambridge University Press, Cambridge, 2007)Google Scholar
  50. 191.
    C. Prévôt, M. Röckner, A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1905 (Springer, Berlin, 2007)Google Scholar
  51. 193.
    J. Rauch, Partial Differential Equations. Graduate Texts in Mathematics, vol. 128 (Springer, New York, 1991)Google Scholar
  52. 194.
    M. Reimers, One-dimensional stochastic partial differential equations and the branching measure diffusion. Probab. Theory Relat. Fields 81(3), 319–340 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 195.
    C.P. Robert, G. Casella, Monte Carlo Statistical Methods (Springer, New York, 2004)CrossRefzbMATHGoogle Scholar
  54. 198.
    Yu.A. Rozanov, Random Fields and Stochastic Partial Differential Equations. Mathematics and Its Applications, vol. 438 (Kluwer Academic, Dordrecht, 1998)Google Scholar
  55. 199.
    B.L. Rozovskii, Stochastic Evolution Systems. Mathematics and Its Applications (Soviet Series), vol. 35 (Kluwer Academic, Dordrecht, 1990)Google Scholar
  56. 202.
    S. Sandow, S. Trimper, Gaussian white noise as a many-particle process: the Kardar-Parisi-Zhang equation. J. Phys. A 26(13), 3079–3084 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 203.
    P. Santa-Clara, D. Sornette, The dynamics of the forward interest rate curve with stochastic string shocks. Rev. Financ. Stud. 14(1), 149–185 (2001)CrossRefGoogle Scholar
  58. 204.
    M. Sanz-Solé, A Course on Malliavin Calculus with Applications to Stochastic Partial Differential Equations. Fundamental Sciences (EPFL Press, Lausanne, 2005)CrossRefzbMATHGoogle Scholar
  59. 210.
    W. Stannat, Stochastic partial differential equations: Kolmogorov operators and invariant measures. Jahresber. Dtsch. Math.-Ver. 113(2), 81–109 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 218.
    H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. (Johann Ambrosius Barth, Heidelberg, 1995)zbMATHGoogle Scholar
  61. 222.
    J.B. Walsh, A stochastic model of neural response. Adv. Appl. Probab. 13(2), 231–281 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 223.
    J.B. Walsh, An introduction to stochastic partial differential equations, in ’Ecole d’été de probabilités de Saint-Flour, XIV—1984. Lecture Notes in Mathematics, vol. 1180 (Springer, Berlin, 1986), pp. 265–439Google Scholar
  63. 230.
    J. Xiong, An Introduction to Stochastic Filtering Theory. Oxford Graduate Texts in Mathematics, vol. 18 (Oxford University Press, Oxford, 2008)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sergey V. Lototsky
    • 1
  • Boris L. Rozovsky
    • 2
  1. 1.Department of MathematicsUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations