Comparison of Circle and Dodecagon Clock Designs for Visualizing 24-Hour Cyclical Data

  • Chen Guo
  • Shuang Wei
  • Mingran Li
  • Zhenyu Cheryl Qian
  • Yingjie Victor ChenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10290)


Radial visualization is an important technique to depict serial periodic data. Circle clock design is intuitive to encode 24-hour cyclical data. However, the biggest limitation of the design is the accuracy of reading time points on circle. Dodecagon is another way to represent time series data. We empirically evaluated the effectiveness of circle and dodecagon clock design in perceiving specific points in time. A post-testing interview was also conducted to understand participants’ strategies to read the times. Results show that dodecagon is more accurate than circle in terms of reading time points. Dodecagon was voted as a powerful approach to read the time points and circle was regarded as a better beautiful visualization method.


Quantitative evaluation Time series data Radial designs 


  1. 1.
    Guo, C., Xu, S., Yu, J., Zhang, H., Wang, Q., Xia, J., Zhang, J., Chen, Y.V., Qian, Z.C., Wang, C., Ebert, D.: Dodeca-rings map: interactively finding patterns and events in large geo-temporal data. In: 2014 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 353–354 (2014)Google Scholar
  2. 2.
    Draper, G., Livnat, Y., Riesenfeld, R.F.: A survey of radial methods for information visualization. IEEE Trans. Vis. Comput. Graph. 15, 759–776 (2009)CrossRefGoogle Scholar
  3. 3.
    Daassi, C., Dumas, M., Fauvet, M.-C., Nigay, L., Scholl, P.-C.: Visual Exploration of Temporal Object Databases (2000)Google Scholar
  4. 4.
    Carlis, J.V., Konstan, J.A.: Interactive visualization of serial periodic data. In: Proceedings of the 11th Annual ACM Symposium on User Interface Software and Technology, pp. 29–38. ACM, New York (1998)Google Scholar
  5. 5.
    Wijk, J.J.V., Selow, E.R.V.: Cluster and calendar based visualization of time series data. In: 1999 IEEE Symposium on Information Visualization, (Info Vis 1999) Proceedings, pp. 4–9, 140 (1999)Google Scholar
  6. 6.
    Bederson, B.B., Clamage, A., Czerwinski, M.P., Robertson, G.G.: DateLens: a fisheye calendar interface for PDAs. ACM Trans. Comput.-Hum. Interact. 11, 90–119 (2004)CrossRefGoogle Scholar
  7. 7.
    Zhao, J., Forer, P., Harvey, A.S.: Activities, ringmaps and geovisualization of large human movement fields. Inf. Vis. 7, 198–209 (2008)CrossRefGoogle Scholar
  8. 8.
    Weber, M., Alexa, M., Müller, W.: Visualizing time-series on spirals. In: Proceedings of the IEEE Symposium on Information Visualization 2001 (INFOVIS 2001), p. 7. IEEE Computer Society, Washington, DC (2001)Google Scholar
  9. 9.
    Dragicevic, P., Huot, S.: SpiraClock: a continuous and non-intrusive display for upcoming events. In: Extended Abstracts of Chi 2002, pp. 604–605 (2002)Google Scholar
  10. 10.
    Fischer, F., Fuchs, J., Mansmann, F.: ClockMap : enhancing circular treemaps with temporal glyphs for time-series data. Presented at the EuroVis (2012)Google Scholar
  11. 11.
    Zwislocki, J.: Sensory Neuroscience: Four Laws of Psychophysics. Springer Science & Business Media, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Cleveland, W.S., McGill, R.: An experiment in graphical perception. Int. J. Man-Mach. Stud. 25, 491–500 (1986)CrossRefGoogle Scholar
  13. 13.
    Hollands, J.G., Dyre, B.P.: Bias in proportion judgments: the cyclical power model. Psychol. Rev. 107, 500–524 (2000)CrossRefGoogle Scholar
  14. 14.
    Simkin, D., Hastie, R.: An information-processing analysis of graph perception. J. Am. Stat. Assoc. 82, 454–465 (1987)CrossRefGoogle Scholar
  15. 15.
    Tufte, E.R.: The Visual Display of Quantitative Information. Graphics Press, Cheshire (2001)Google Scholar
  16. 16.
    Cleveland, W.S., McGill, R.: Graphical perception: theory, experimentation, and application to the development of graphical methods. J. Am. Stat. Assoc. 79, 531–554 (1984)CrossRefGoogle Scholar
  17. 17.
    Albo, Y., Lanir, J., Bak, P., Rafaeli, S.: Off the radar: comparative evaluation of radial visualization solutions for composite indicators. IEEE Trans. Vis. Comput. Graph. 22, 569–578 (2016)CrossRefGoogle Scholar
  18. 18.
    Fuchs, J., Fischer, F., Mansmann, F., Bertini, E., Isenberg, P.: Evaluation of alternative glyph designs for time series data in a small multiple setting. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3237–3246. ACM, New York (2013)Google Scholar
  19. 19.
    Fuchs, J., Isenberg, P., Bezerianos, A., Keim, D.: A systematic review of experimental studies on data glyphs. IEEE Trans. Vis. Comput. Graph. PP, 1 (2016)CrossRefGoogle Scholar
  20. 20.
    Vessey, I.: Cognitive fit: a theory-based analysis of the graphs versus tables literature*. Decis. Sci. 22, 219–240 (1991)CrossRefGoogle Scholar
  21. 21.
    Spence, I., Krizel, P.: Children’s perception of proportion in graphs. Child Dev. 65, 1193–1213 (1994)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Chen Guo
    • 1
  • Shuang Wei
    • 1
  • Mingran Li
    • 1
  • Zhenyu Cheryl Qian
    • 1
  • Yingjie Victor Chen
    • 1
    Email author
  1. 1.Purdue UniversityWest LafayetteUSA

Personalised recommendations