Simplified Thermal Comfort Evaluation on Public Busses for Performance Optimization

  • Guilherme Valle Loures Brandão
  • Wilian Daniel Henriques do Amaral
  • Caio Augusto Rabite de Almeida
  • Jose Alberto Barroso CastañonEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10290)


This paper consists on a simplified methodology proposal for thermal comfort evaluation inside short-haul urban busses using dry and wet bulb temperature readings paired with the air relative humidity and then compare each situation to a predefined comfort zone based on common literature parameters. To demonstrate the method application, readings were made in the morning, noon and late afternoon over 65 working days during late winter through mid-spring seasons in the city of Juiz de Fora – Brazil.


Thermal comfort Urban bus Hygrothermal comfort Comfort evaluation 


  1. 1.
    Riachi, Y., Clodic, D.: A numerical model for simulating thermal comfort prediction in public transportation buses. Int. J. Environ. Prot. Policy 2(1), 1–8 (2014)CrossRefGoogle Scholar
  2. 2.
    Fanger, P.O.: Thermal Comfort: Analysis and Applications in Environmental Engineering. McGraw-Hill Book Company, New York (1972)Google Scholar
  3. 3.
    ASHRAE.: Fundamentals Handbook. American Society of Heating, Ventilating and Air-Conditioning Engineers. Atlanta, USA (2001)Google Scholar
  4. 4.
    Danca, P., Vartiresa, A., Dogeanua, A.: An overview of current methods for thermal comfort assessment in vehicle cabin. Energy Procedia 85, 162–169 (2016)CrossRefGoogle Scholar
  5. 5.
    Körbahti, B., Kucur, M., Kaykayoglu, C.R.: An innovative computational model of the thermal comfort conditions in city/inter-city buses. In: ECCOMAS 2000 - European Congress on Computational Methods in Applied Sciences and Engineering, pp. 11–14, Barcelona (2000)Google Scholar
  6. 6.
    Associação Brasileira de Normas Técnicas.: NBR 15570: Transporte - Especificações técnicas para fabricação de veículos de características urbanas para transporte coletivo de passageiros. ABNT, Rio de Janeiro (2011)Google Scholar
  7. 7.
    Ivanescu, M., Neacsu, C.A., Tabacu, I.: Studies of the thermal comfort inside of the passenger compartment using the numerical simulation. In: International Congress Motor Vehicles & Motors 2010, Kragujevac, pp. 7–9 (2010)Google Scholar
  8. 8.
    Pala, U., Oz, H.R.: An investigation of thermal comfort inside a bus during heating period within a climatic chamber. Appl. Ergon. 48, 164–176 (2015)CrossRefGoogle Scholar
  9. 9.
    Medeiros, E.G.S.: Estudo Termoambiental em Viaturas Utilizadas nos Serviços de Radiopatrulhamento no Estado da Paraíba. Masters degree thesis, Universidade Federal da Paraíba (2014)Google Scholar
  10. 10.
    Frota, A.B., Schiffer, S.R.: Manual de Conforto Térmico: Arquitetura. Urbanismo. Studio Nobel, São Paulo (2001)Google Scholar
  11. 11.
    Lamberts, R.: Conforto e Stress Térmico. Technical report, Universidade Federal de Santa Catarina Civil Engineering Department (2014)Google Scholar
  12. 12.
    International Organization for Standardization.: ISO 7730: Moderate thermal environments - Determination of the PMV and PPD indices and specification of the conditions for thermal comfort. ISO, Geneva (2005)Google Scholar
  13. 13.
    Lin, T., Hwang, R., Huang, K., Sun, C., Huang, Y.: Passenger thermal perceptions, thermal comfort requirements and adaptations in short and long-haul vehicles. Int. J. Biometeorol. 54, 221–230 (2010)CrossRefGoogle Scholar
  14. 14.
    International Organization for Standardization.: ISO 14505-2: Ergonomics of the thermal environment – Evaluation of thermal environments in vehicles. Part 2: determination of equivalent temperature. ISO, Geneva (2006)Google Scholar
  15. 15.
    Ormuž, K., Muftić, O.: Main ambient factors influencing passenger vehicle comfort. In: Proceedings of 2nd International Ergonomics Conference, Zegreb, pp. 21–22 (2004)Google Scholar
  16. 16.
    e diretrizes construtivas para habitações unifamiliares de interesse social. ABNT, Rio de Janeiro (2005)Google Scholar
  17. 17.
    Associação Brasileira de Normas Técnicas.: NBR 16401: Instalações de ar-condicionado – sistemas centrais e unitários. ABNT, Rio de Janeiro (2008)Google Scholar
  18. 18.
    Associação Brasileira de Normas Técnicas.: NBR 15575: Edificações Habitacionais – Desempenho. ABNT, Rio de Janeiro (2013)Google Scholar
  19. 19.
    International Organization for Standardization.: ISO 14505-1: Ergonomics of the thermal environment – Evaluation of thermal environments in vehicles. Part 1: Principles and methods for assessment of thermal stress. ISO, Geneva (2007)Google Scholar
  20. 20.
    International Organization for Standardization.: ISO 14505-3: Ergonomics of the thermal environment – Evaluation of thermal environments in vehicles. Part 3: Evaluation of thermal comfort using human subjects. ISO, Geneva (2007)Google Scholar
  21. 21.
    ANSI/ASHRAE.: Standard 55: Thermal Environment Conditions for Human Occupancy (2013)Google Scholar
  22. 22.
    Zhou, Q.: Thermal comfort in vehicles. Technical report, Faculty of Engineering and Sustainable Development (2013)Google Scholar
  23. 23.
    Dunlop, S.: A Dictionary of Weather. Oxford University Press, Oxford (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Guilherme Valle Loures Brandão
    • 1
  • Wilian Daniel Henriques do Amaral
    • 1
  • Caio Augusto Rabite de Almeida
    • 1
  • Jose Alberto Barroso Castañon
    • 1
    Email author
  1. 1.Universidade Federal de Juiz de ForaJuiz de ForaBrazil

Personalised recommendations