Advertisement

Research on Image Emotional Semantic Retrieval Mechanism Based on Cognitive Quantification Model

  • Tian Liang
  • Liqun ZhangEmail author
  • Min Xie
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10290)

Abstract

In the wake of the development of first-person engagement and crowdsourcing content creation, images are given abundant subjective dimensions of information, especially emotional ones. This research tried to purpose an approach for the image emotional semantic retrieval based on cognitive quantification model by using tags. In this research “Daqi”, a typical Chinese emotional experience, is taken as an example to construct an emotional quantification model of it through semantic association analysis and statistical data analysis. The results of verification experiments indicated that it is practical and effective to rank images and recommend tags in image emotional retrieval system based on cognitive model. It is foreseeable that the theory of this research can be applied to other social digital resources, like music or video.

Keywords

Image emotional semantic retrieval Cognitive quantification Image annotation 

References

  1. 1.
    Ames, M., Naaman, M.: Why we tag: motivations for annotation in mobile and online media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM (2007)Google Scholar
  2. 2.
    Budanitsky, A., Hirst, G.: Evaluating wordnet-based measures of lexical semantic relatedness. Comput. Linguist. 32(1), 13–47 (2006)CrossRefzbMATHGoogle Scholar
  3. 3.
    Cambria, E., Hussain, A., Havasi, C., Eckl, C.: Sentic computing: exploitation of common sense for the development of emotion-sensitive systems. In: Esposito, A., Campbell, N., Vogel, C., Hussain, A., Nijholt, A. (eds.) Development of Multimodal Interfaces: Active Listening and Synchrony. LNCS, vol. 5967, pp. 148–156. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12397-9_12 CrossRefGoogle Scholar
  4. 4.
    Fukumoto, T.: An analysis of image retrieval behavior for metadata type image database. Inf. Process. Manag. 42(3), 723–728 (2006)CrossRefGoogle Scholar
  5. 5.
    Hanbury, A.: A survey of methods for image annotation. J. Visual Lang. Comput. 19(5), 617–627 (2008)CrossRefGoogle Scholar
  6. 6.
    Li, X., et al.: Low-rank image tag completion with dual reconstruction structure preserved. Neurocomputing 173, 425–433 (2016)CrossRefGoogle Scholar
  7. 7.
    Liu, N., et al.: Multimodal recognition of visual concepts using histograms of textual concepts and selective weighted late fusion scheme. Comput. Vis. Image Underst. 117(5), 493–512 (2013)CrossRefGoogle Scholar
  8. 8.
    Liu, Y., et al.: A survey of content-based image retrieval with high-level semantics. Pattern Recogn. 40(1), 262–282 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Lu, Y., et al.: A unified framework for semantics and feature based relevance feedback in image retrieval systems. In: Proceedings of the Eighth ACM International Conference on Multimedia. ACM (2000)Google Scholar
  10. 10.
    Matusiak, K.K.: Information seeking behavior in digital image collections: a cognitive approach. J. Acad. Librariansh. 32(5), 479–488 (2006)CrossRefGoogle Scholar
  11. 11.
    Müller, H., et al.: Learning from user behavior in image retrieval: application of market basket analysis. Int. J. Comput. Vis. 56(1–2), 65–77 (2004)CrossRefGoogle Scholar
  12. 12.
    Sánchez-Rada, J.F., Iglesias, C.A.: Onyx: a linked data approach to emotion representation. Inf. Process. Manag. 52(1), 99–114 (2016)CrossRefGoogle Scholar
  13. 13.
    Scherer, K.R.: What are emotions? And how can they be measured? Soc. Sci. Inf. 44(4), 695–729 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Schmidt, S., Stock, W.G.: Collective indexing of emotions in images. A study in emotional information retrieval. J. Am. Soc. Inf. Sci. Technol. 60(5), 863–876 (2009)CrossRefGoogle Scholar
  15. 15.
    Schröder, M., Pirker, H., Lamolle, M., Burkhardt, F., Peter, C., Zovato, E.: Representing emotions and related states in technological systems. In: Cowie, R., Pelachaud, C., Petta, P. (eds.) Emotion-Oriented Systems, Cognitive Technologies, pp. 369–387. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Sun, A., et al.: Tag-based social image retrieval: an empirical evaluation. J. Am. Soc. Inf. Sci. Technol. 62(12), 2364–2381 (2011)CrossRefGoogle Scholar
  17. 17.
    Wang, W., He, Q.: A survey on emotional semantic image retrieval. In: 15th IEEE International Conference on Image Processing, ICIP 2008. IEEE (2008)Google Scholar
  18. 18.
    Wei-ning, W., et al.: Image retrieval by emotional semantics: a study of emotional space and feature extraction. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2006. IEEE (2006)Google Scholar
  19. 19.
    Wu, L., et al.: Tag completion for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 716–727 (2013)CrossRefGoogle Scholar
  20. 20.
    Zha, Z.-J., et al.: Interactive social group recommendation for Flickr photos. Neurocomputing 105, 30–37 (2013)CrossRefGoogle Scholar
  21. 21.
    Zhang, H., Augilius, E., Honkela, T., Laaksonen, J., Gamper, H., Alene, H.: Analyzing emotional semantics of abstract art using low-level image features. In: Gama, J., Bradley, E., Hollmén, J. (eds.) IDA 2011. LNCS, vol. 7014, pp. 413–423. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24800-9_38 CrossRefGoogle Scholar
  22. 22.
    Zimmermann, P., et al.: Affective computing – a rationale for measuring mood with mouse and keyboard. Int. J. Occup. Saf. Ergon. 9(4), 539–551 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Design ManagementShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations