Advertisement

On the Computational Complexity of the Freezing Non-strict Majority Automata

  • Eric Goles
  • Diego MaldonadoEmail author
  • Pedro Montealegre
  • Nicolas Ollinger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10248)

Abstract

Consider a two dimensional lattice with the von Neumann neighborhood such that each site has a value belonging to \(\{0,1\}\) which changes state following a freezing non-strict majority rule, i.e., sites at state 1 remain unchanged and those at 0 change iff two or more of it neighbors are at state 1. We study the complexity of the decision problem consisting in to decide whether an arbitrary site initially in state 0 will change to state 1. We show that the problem in the class \(\mathbf{NC}\) proving a characterization of the maximal sets of stable sites as the tri-connected components.

References

  1. 1.
    Schelling, T.C.: Micromotives and Macrobehavior. WW Norton & Company, New York (2006)Google Scholar
  2. 2.
    Medina, P., Goles, E., Zarama, R., Rica, S.: Self-organized societies: on the Sakoda model of social interactions. Complexity 2017 (2017)Google Scholar
  3. 3.
    Domic, N.G., Goles, E., Rica, S.: Dynamics and complexity of the schelling segregation model. Phys. Rev. E 83(5), 056111 (2011)CrossRefGoogle Scholar
  4. 4.
    Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Modern Phys. 81(2), 591 (2009)CrossRefGoogle Scholar
  5. 5.
    Hegselmann, R.: Modeling social dynamics by cellular automata. In: Computer Modeling of Social Processes, pp. 37–64 (1998)Google Scholar
  6. 6.
    Greenlaw, R., Hoover, H., Ruzzo, W.: Limits to Parallel Computation: P-Completeness Theory. Oxford University Press Inc., New York (1995)zbMATHGoogle Scholar
  7. 7.
    Moore, C.: Majority-vote cellular automata, ising dynamics, and p-completeness. Working papers, Santa Fe Institute (1996)Google Scholar
  8. 8.
    Karafyllidis, I., Thanailakis, A.: A model for predicting forest fire spreading using cellular automata. Ecol. Model. 99(1), 87–97 (1997)CrossRefGoogle Scholar
  9. 9.
    Fuentes, M.A., Kuperman, M.N.: Cellular automata and epidemiological models with spatial dependence. Physica A: Stat. Mech. Appl. 267(3), 471–486 (1999)CrossRefGoogle Scholar
  10. 10.
    Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a bethe lattice. J. Phys. C: Solid State Phys. 12(1), L31 (1979)CrossRefGoogle Scholar
  11. 11.
    Goles, E., Ollinger, N., Theyssier, G.: Introducing freezing cellular automata. In: 21st International Workshop (AUTOMATA 2015) Cellular Automata and Discrete Complex Systems, Turku, Finland, vol. 24. TUCS Lecture Notes, pp. 65–73, June 2015Google Scholar
  12. 12.
    Goles, E., Montealegre-Barba, P., Todinca, I.: The complexity of the bootstraping percolation and other problems. Theor. Comput. Sci. 504, 73–82 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    JáJá, J.: An Introduction to Parallel Algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood City (1992)zbMATHGoogle Scholar
  14. 14.
    JáJá, J., Simon, J.: Parallel algorithms in graph theory: planarity testing. SIAM J. Comput. 11(2), 314–328 (1982)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Eric Goles
    • 1
    • 2
    • 3
  • Diego Maldonado
    • 2
    Email author
  • Pedro Montealegre
    • 2
  • Nicolas Ollinger
    • 2
  1. 1.Facultad de Ciencias y TecnologiaUniversidad Adolfo IbañezSantiagoChile
  2. 2.Univ. Orléans, LIFO EA 4022OrléansFrance
  3. 3.LE STUDIUM, Loire Valley Institute for Advanced StudiesOrléansFrance

Personalised recommendations