Advertisement

Canonical Form of Gray Codes in N-cubes

  • Sylvain Contassot-VivierEmail author
  • Jean-François Couchot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10248)

Abstract

In previous works, the idea of walking into a \(\mathsf {N}\)-cube where a balanced Hamiltonian cycle have been removed has been proposed as the basis of a chaotic PRNG whose chaotic behavior has been proven. However, the construction and selection of the most suited balanced Hamiltonian cycles implies practical and theoretical issues. We propose in this paper a canonical form for representing isomorphic Gray codes. It provides a drastic complexity reduction of the exploration of all the Hamiltonian cycles and we discuss some criteria for the selection of the most suited cycles for use in our chaotic PRNG.

Notes

Acknowledgments

This work is partially funded by the Labex ACTION program (contract ANR-11-LABX-01-01).

References

  1. 1.
    Bykov, I.S.: On locally balanced gray codes. J. Appl. Ind. Math. 10(1), 78–85 (2016). http://dx.doi.org/10.1134/S1990478916010099 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cao, L., Min, L., Zang, H.: A chaos-based pseudorandom number generator and performance analysis. In: International Conference on Computational Intelligence and Security, CIS 2009, vol. 1, pp. 494–498. IEEE, December 2009Google Scholar
  3. 3.
    Couchot, J.F., Contassot-Vivier, S., Héam, P.C., Guyeux, C.: Random walk in a N-cube without Hamiltonian cycle to chaotic pseudorandom number generation: theoretical and practical considerations. International Journal of Bifurcation and Chaos (2016). Accepted on October 2016Google Scholar
  4. 4.
    Couchot, J., Héam, P., Guyeux, C., Wang, Q., Bahi, J.M.: Pseudorandom number generators with balanced gray codes. In: SECRYPT 2014 - Proceedings of the 11th International Conference on Security and Cryptography, Vienna, Austria, 28–30 August 2014, pp. 469–475 (2014)Google Scholar
  5. 5.
    Sloane, N.: On-line encyclopedia of integer sequences. http://oeis.org
  6. 6.
    Stojanovski, T., Kocarev, L.: Chaos-based random number generators-part i: analysis [cryptography]. IEEE Trans. Circ. Syst. I: Fundam. Theor. Appl. 48(3), 281–288 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Stojanovski, T., Pihl, J., Kocarev, L.: Chaos-based random number generators part ii: practical realization. IEEE Trans. Circ. Syst. I: Fundam. Theor. Appl. 48(3), 382–385 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Suparta, I., van Zanten, A.: Totally balanced and exponentially balanced gray codes. Discrete Anal. Oper. Res. (Russia) 11(4), 81–98 (2004)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Suparta, I., van Zanten, A.: A construction of gray codes inducing complete graphs. Discrete Math. 308(18), 4124–4132 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Wild, M.: Generating all cycles, Chordless cycles, and Hamiltonian cycles with the principle of exclusion. J. Discrete Algorithms 6(1), 93–103 (2008). http://www.sciencedirect.com/science/article/pii/S1570866707000020, Selected papers from AWOCA 2005 Sixteenth Australasian Workshop on Combinatorial AlgorithmsMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Sylvain Contassot-Vivier
    • 1
    Email author
  • Jean-François Couchot
    • 2
  1. 1.Université de Lorraine, LORIA, UMR 7503Vandoeuvre-lès-NancyFrance
  2. 2.FEMTO-ST Institute, Univ. Bourgogne Franche-ComtéBesançonFrance

Personalised recommendations