Advertisement

Infinite Two-Dimensional Strong Prefix Codes: Characterization and Properties

  • Marcella Anselmo
  • Dora GiammarresiEmail author
  • Maria Madonia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10248)

Abstract

A two-dimensional code is defined as a set of rectangular pictures over an alphabet \(\varSigma \) such that any picture over \(\varSigma \) is tilable in at most one way with pictures in X. It is in general undecidable whether a set of pictures is a code, even in the finite case. Recently, finite strong prefix codes were introduced in [3] as a family of decidable picture codes. In this paper we study infinite strong prefix codes and give a characterization for the maximal ones based on iterated extensions. Moreover, we prove some properties regarding the measure of these codes.

Keywords

Two-dimensional languages Prefix codes Measure 

References

  1. 1.
    Aigrain, P., Beauquier, D.: Polyomino tilings, cellular automata and codicity. Theoret. Comput. Sci. 147, 165–180 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Anselmo, M., Giammarresi, D., Madonia, M.: Deterministic and unambiguous families within recognizable two-dimensional languages. Fund. Inform. 98(2–3), 143–166 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Anselmo, M., Giammarresi, D., Madonia, M.: Strong prefix codes of pictures. In: Muntean, T., Poulakis, D., Rolland, R. (eds.) CAI 2013. LNCS, vol. 8080, pp. 47–59. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40663-8_6 CrossRefGoogle Scholar
  4. 4.
    Anselmo, M., Giammarresi, D., Madonia, M.: Two dimensional prefix codes of pictures. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 46–57. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38771-5_6 CrossRefGoogle Scholar
  5. 5.
    Anselmo, M., Giammarresi, D., Madonia, M.: Structure and measure of a decidable class of two-dimensional codes. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 315–327. Springer, Cham (2015). doi: 10.1007/978-3-319-15579-1_24 Google Scholar
  6. 6.
    Anselmo, M., Giammarresi, D., Madonia, M., Restivo, A.: Unambiguous recognizable two-dimensional languages. ITA 40(2), 227–294 (2006)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Anselmo, M., Giammarresi, D., Madonia, M.: Prefix picture codes: a decidable class of two-dimensional codes. Int. J. Found. Comput. Sci. 25(8), 1017–1032 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Anselmo, M., Giammarresi, D., Madonia, M.: Picture codes and deciphering delay. Information and Computation (2017, in press)Google Scholar
  9. 9.
    Anselmo, M., Giammarresi, D., Madonia, M.: Structure and properties of strong prefix codes of pictures. Math. Struct. Comput. Sci. 27(2), 123–142 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Anselmo, M., Jonoska, N., Madonia, M.: Framed versus unframed two-dimensional languages. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 79–92. Springer, Heidelberg (2009). doi: 10.1007/978-3-540-95891-8_11 CrossRefGoogle Scholar
  11. 11.
    Anselmo, M., Madonia, M.: Two-dimensional comma-free and cylindric codes. Theor. Comput. Sci. 658, 4–17 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Barcucci, E., Bernini, A., Bilotta, S., Pinzani, R.: Cross-bifix-free sets in two dimensions. Theor. Comput. Sci. 664, 29–38 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Beauquier, D., Nivat, M.: A codicity undecidable problem in the plane. Theoret. Comp. Sci 303, 417–430 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University Press, New York (2009)CrossRefzbMATHGoogle Scholar
  15. 15.
    Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: SWAT (FOCS), pp. 155–160 (1967)Google Scholar
  16. 16.
    Bozapalidis, S., Grammatikopoulou, A.: Picture codes. ITA 40(4), 537–550 (2006)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G. (ed.) Handbook of Formal Languages, vol. III, pp. 215–268. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  18. 18.
    Grammatikopoulou, A.: Prefix picture sets and picture codes. In: Proceedings of the CAI 2005, pp. 255–268. Aristotle University of Thessaloniki (2005)Google Scholar
  19. 19.
    Kari, J., Salo, V.: A survey on picture-walking automata. In: Kuich, W., Rahonis, G. (eds.) Algebraic Foundations in Computer Science. LNCS, vol. 7020, pp. 183–213. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24897-9_9 CrossRefGoogle Scholar
  20. 20.
    Kolarz, M., Moczurad, W.: Multiset, set and numerically decipherable codes over directed figures. In: Arumugam, S., Smyth, W.F. (eds.) IWOCA 2012. LNCS, vol. 7643, pp. 224–235. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-35926-2_25 CrossRefGoogle Scholar
  21. 21.
    Moczurad, M., Moczurad, W.: Some open problems in decidability of brick (labelled polyomino) codes. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 72–81. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-27798-9_10 CrossRefGoogle Scholar
  22. 22.
    Otto, F., Mráz, F.: Deterministic ordered restarting automata for picture languages. Acta Inf. 52(7–8), 593–623 (2015)Google Scholar
  23. 23.
    Pradella, M., Cherubini, A., Crespi-Reghizzi, S.: A unifying approach to picture grammars. Inf. Comput. 209(9), 1246–1267 (2011)Google Scholar
  24. 24.
    Simplot, D.: A characterization of recognizable picture languages by tilings by finite sets. Theoret. Comput. Sci. 218(2), 297–323 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Marcella Anselmo
    • 1
  • Dora Giammarresi
    • 2
    Email author
  • Maria Madonia
    • 3
  1. 1.Dipartimento di InformaticaUniversità di SalernoFiscianoItaly
  2. 2.Dipartimento di MatematicaUniversità Roma “Tor Vergata”RomaItaly
  3. 3.Dipartimento di Matematica e InformaticaUniversità di CataniaCataniaItaly

Personalised recommendations