Some Computational Limits of Trellis Automata

  • Véronique TerrierEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10248)


We investigate some computational limits of trellis automata. Reusing a counting argument introduced in [4], we show that:
$$\{x_1\dots x_ny_1\dots y_n: x_iy_i\in \{ab,ba,bb\}\;\text { for } i=1,\dots ,n\}$$
is not a trellis language.


  1. 1.
    Čulík II, K.: Variations of the firing squad problem and applications. Inf. Process. Lett. 30(3), 152–157 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Čulík II, K., Gruska, J., Salomaa, A.: Systolic trellis automata II. Int. J. Comput. Math. 16, 3–22 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dyer, C.R.: One-way bounded cellular automata. Inf. Control 44(3), 261–281 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Grandjean, A., Richard, G., Terrier, V.: Linear functional classes over cellular automata. In: Formenti, E. (ed.), Proceedings AUTOMATA & JAC 2012, pp. 177–193 (2012)Google Scholar
  5. 5.
    Okhotin, A.: Automaton Representation of Linear Conjunctive Languages. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 393–404. Springer, Heidelberg (2003). doi: 10.1007/3-540-45005-X_35 CrossRefGoogle Scholar
  6. 6.
    Okhotin, A.: On the equivalence of linear conjunctive grammars and trellis automata. RAIRO Informatique Théorique et Applications 38(1), 69–88 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Okhotin, A.: Conjunctive and boolean grammars: the true general case of the context-free grammars. Comput. Sci. Rev. 9, 27–59 (2013)CrossRefzbMATHGoogle Scholar
  8. 8.
    Okhotin, A.: Input-driven languages are linear conjunctive. Theoret. Comput. Sci. 618, 52–71 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Terrier, V.: On real time one-way cellular array. Theoret. Comput. Sci. 141(1–2), 331–335 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Terrier, V.: Language not recognizable in real time by one-way cellular automata. Theoret. Comput. Sci. 156(1–2), 281–287 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Terrier, V.: Recognition of poly-slender context-free languages by trellis automata. Theoret. Comput. Sci. (2017)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYCCaenFrance

Personalised recommendations