Advertisement

Distortion in One-Head Machines and Cellular Automata

  • Pierre Guillon
  • Ville SaloEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10248)

Abstract

We give two families of examples of automorphisms of subshifts that are range-distorted, that is, the radius of their iterations grows sublinearly. One of these families comes from one-head machines, and allows us to build such automorphisms for the full shift, and to obtain undecidability results. We also give some conditions on the functions that can occur as such growths.

Keywords

Cellular Automaton Markov Shift Full Shift Sublinear Function Linear Piece 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cyr, V., Franks, J., Kra, B.: The spacetime of a shift automorphism. ArXiv e-prints, October 2016Google Scholar
  2. 2.
    Kari, J., Ollinger, N.: Periodicity and immortality in reversible computing. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 419–430. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85238-4_34 CrossRefGoogle Scholar
  3. 3.
    Cassaigne, J., Ollinger, N., Torres-Avilés, R.: A small minimal aperiodic reversible turing machine. J. Comput. Syst. Sci. 84, 288–301 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Math. Syst. Theory 3, 320–375 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cyr, V., Franks, J., Kra, B., Petite, S.: Distortion and the automorphism group of a shift. ArXiv e-prints, November 2016Google Scholar
  6. 6.
    Tisseur, P.: Cellular automata and lyapunov exponents. Nonlinearity 13(5), 1547–1560 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boyle, M., Lind, D.: Expansive subdynamics. Trans. AMS 349(1), 55–102 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hochman, M.: Non-expansive directions for \(\mathbb{Z}^2\) actions. Ergodic Theory Dyn. Syst. 31, 91–112 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Zinoviadis, C.: Hierarchy and Expansiveness in 2D Subshifts of Finite Type. PhD thesis, Turun Yliopisto, Turku (2015)Google Scholar
  10. 10.
    Guillon, P., Zinoviadis, C.: Hierarchy and expansiveness in two-dimensional subshifts of finite type, March 2016. draftGoogle Scholar
  11. 11.
    Morita, K.: Universality of reversible two-counter machine. Theoret. Comput. Sci. 168(2), 303–320 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kůrka, P.: On topological dynamics of turing machines. Theoret. Comput. Sci. 174(1), 203–216 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gajardo, A., Guillon, P.: Zigzags in turing machines. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 109–119. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13182-0_11 CrossRefGoogle Scholar
  14. 14.
    Jeandel, E.: Computability of the entropy of one-tape Turing machines. ArXiv e-prints, February 2013Google Scholar
  15. 15.
    Hennie, F.: One-tape, off-line turing machine computations. Inf. Control 8, 553–578 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Salo, V.: Subshifts with sparse projective subdynamics. ArXiv e-prints, May 2016Google Scholar
  17. 17.
    Blondel, V.D., Cassaigne, J., Nichitiu, C.: On the presence of periodic configurations in turing machines and in counter machines. Theoret. Comput. Sci. 289, 573–590 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Adamczewski, B.: Balances for fixed points of primitive substitutions. Theoret. Comput. Sci. 307(1), 47–75 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Salo, V.: A note on subgroups of automorphism groups of full shifts. Ergodic Theory and Dynamical Systems, pp. 1–13 (2016)Google Scholar
  20. 20.
    Kim, K.H., Roush, F.W.: On the automorphism groups of subshifts. Pure Math. Appl. 1(4), 203–230 (1990)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Barbieri, S., Kari, J., Salo, V.: The group of reversible turing machines. In: Cook, M., Neary, T. (eds.) AUTOMATA 2016. LNCS, vol. 9664, pp. 49–62. Springer, Cham (2016). doi: 10.1007/978-3-319-39300-1_5 Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Université d’Aix-Marseille CNRS, Centrale Marseille, I2M, UMR 7373MarseilleFrance
  2. 2.University of TurkuTurkuFinland

Personalised recommendations