Influence of Spontaneous Rhythm on Movement-Related Cortical Potential - A Preliminary Neurofeedback Study

  • Lin Yao
  • Mei Lin Chen
  • Xinjun Sheng
  • Natalie Mrachacz-Kersting
  • Xiangyang Zhu
  • Dario Farina
  • Ning Jiang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10284)

Abstract

In this work, the variation of the waveform of the movement related cortical potential (MRCP) was investigated in a real-time neurofeedback study, in which the spontaneous slow cortical potential (SCP) within the same frequency band as MRCP ([0.05 3] Hz) was provided as feedback to the subjects. Experiments have shown that the background SCP activity has a strong influence on the waveform of the self-paced MRCP. Negative potential SCP has been shown to increase the negative peak of the MRCP waveform, while positive potential SCP has been shown to reduce the negative peak. The variation of the single-trial MRCP waveform was correlated with the background SCP activity. This study provided a new approach to evaluate and modulate MRCP waveform, which directly determines the brain switch detection BCI performance.

Keywords

Brain-computer interface (BCI) Movement related cortical potential (MRCP) Slow cortical potential (SCP) Neurofeedback 

Notes

Acknowledgement

We thank all volunteers for their participation in the study. This work is supported by the University Starter Grant of the University of Waterloo (No. 203859), the National Natural Science Foundation of China (Grant No. 51620105002, 51375296, 51421092), the Research Project of State Key Laboratory of Mechanical System and Vibration MSV201607.

References

  1. 1.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M., et al.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)CrossRefGoogle Scholar
  2. 2.
    Birbaumer, N., Cohen, L.G.: Brain-computer interfaces: communication and restoration of movement in paralysis. J. Physiol. 579(Pt 3), 621–636 (2007)CrossRefGoogle Scholar
  3. 3.
    Pfurtscheller, G., Neuper, C.: Motor imagery and direct brain-computer communication. Proc. IEEE 89(7), 1123–1134 (2001)CrossRefGoogle Scholar
  4. 4.
    Yao, L., Sheng, X., Zhang, D., Jiang, N., Farina, D., Zhu, X.: A BCI system based on somatosensory attentional orientation. IEEE Trans. Neural Syst. Rehabil. Eng. 4320(c), 1 (2016)Google Scholar
  5. 5.
    Meng, J., Zhang, S., Bekyo, A., Olsoe, J., Baxter, B., He, B.: Noninvasive electroencephalogram based control of a robotic arm for reach and grasp tasks. Sci. Rep. 6(November), 38565 (2016)CrossRefGoogle Scholar
  6. 6.
    Pfurtscheller, G., Müller, G.R., Pfurtscheller, J., Gerner, H.J., Rupp, R.: ‘Thought’–control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci. Lett. 351(1), 33–36 (2003)CrossRefGoogle Scholar
  7. 7.
    Doud, A.J., Lucas, J.P., Pisansky, M.T., He, B.: Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface. PLoS ONE 6(10), e26322 (2011)CrossRefGoogle Scholar
  8. 8.
    Kaiser, V., Bauernfeind, G., Kreilinger, A., Kaufmann, T., Kübler, A., Neuper, C., Müller-Putz, G.R.: Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG. Neuroimage 85(Pt 1), 432–444 (2014)CrossRefGoogle Scholar
  9. 9.
    Pichiorri, F., De Vico Fallani, F., Cincotti, F., Babiloni, F., Molinari, M., Kleih, S.C., Neuper, C., Kübler, A., Mattia, D.: Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness. J. Neural Eng. 8(2), 25020 (2011)CrossRefGoogle Scholar
  10. 10.
    Pichiorri, F., Fallani, F.D.V., Cincotti, F., Babiloni, F., Molinari, M., Kleih, S.C., Neuper, C., Kübler, A., Mattia, D.: Sensorimotor rhythm-based brain–computer interface training: the impact on motor cortical responsiveness. J. Neural Eng. 8(2), 25020 (2011)CrossRefGoogle Scholar
  11. 11.
    Ramos-Murguialday, A., Broetz, D., Rea, M., Läer, L., Yilmaz, Ö., Brasil, F.L., Liberati, G., Curado, M.R., Garcia-Cossio, E., Vyziotis, A., Cho, W., Agostini, M., Soares, E., Soekadar, S., Caria, A., Cohen, L.G., Birbaumer, N.: Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74(1), 100–108 (2013)CrossRefGoogle Scholar
  12. 12.
    Mrachacz-Kersting, N., Kristensen, S.R., Niazi, I.K., Farina, D.: Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. J. Physiol. 590(7), 1669–1682 (2012)CrossRefGoogle Scholar
  13. 13.
    Mrachacz-Kersting, N., Jiang, N., Stevenson, A.J.T., Niazi, I.K., Kostic, V., Pavlovic, A., Radovanovic, S., Djuric-Jovicic, M., Agosta, F., Dremstrup, K., Farina, D.: Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. J. Neurophysiol. (2015). doi: 10.1152/jn.00918.2015
  14. 14.
    Niazi, I.K., Jiang, N., Jochumsen, M., Nielsen, J.F., Dremstrup, K., Farina, D.: Detection of movement-related cortical potentials based on subject-independent training. Med. Biol. Eng. Comput. 51(5), 507–512 (2013)CrossRefGoogle Scholar
  15. 15.
    Xu, R., Jiang, N., Lin, C., Mrachacz-Kersting, N., Dremstrup, K., Farina, D.: Enhanced low-latency detection of motor intention from EEG for closed-loop brain-computer interface applications. IEEE Trans. Biomed. Eng. 61(2), 288–296 (2014)CrossRefGoogle Scholar
  16. 16.
    Xu, R., Jiang, N., Mrachacz-Kersting, N., Lin, C.: A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity. Trans. Biomed. Eng. 61(7), 2092–2101 (2014)CrossRefGoogle Scholar
  17. 17.
    Jahanshahi, M., Hallett, M.: The Bereitschaftspotential: Movement-Related Cortical Potentials. Springer Science & Business Media, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Deecke, L., Grözinger, B., Kornhuber, H.H.: Voluntary finger movement in man: cerebral potentials and theory. Biol. Cybern. 23(2), 99–119 (1976)CrossRefGoogle Scholar
  19. 19.
    Kristeva, R., Keller, E., Deecke, L., Kornhuber, H.H.: Cerebral potentials preceding unilateral and simultaneous bilateral finger movements. Electroencephalogr. Clin. Neurophysiol. 47(2), 229–238 (1979)CrossRefGoogle Scholar
  20. 20.
    Libet, B., Gleason, C.A., Wright, E.W., Pearl, D.K.: Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). Brain 106(3), 623–642 (1983)CrossRefGoogle Scholar
  21. 21.
    Hinterberger, T., Schmidt, S., Neumann, N., Mellinger, J., Blankertz, B., Curio, G., Birbaumer, N.: Brain-computer communication and slow cortical potentials. IEEE Trans. Biomed. Eng. 51(6), 1011–1018 (2004)CrossRefGoogle Scholar
  22. 22.
    Solnik, S., Rider, P., Steinweg, K., Devita, P., Hortobágyi, T.: Teager-Kaiser energy operator signal conditioning improves EMG onset detection. Eur. J. Appl. Physiol. 110(3), 489–498 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Lin Yao
    • 1
  • Mei Lin Chen
    • 1
  • Xinjun Sheng
    • 2
  • Natalie Mrachacz-Kersting
    • 3
  • Xiangyang Zhu
    • 2
  • Dario Farina
    • 4
  • Ning Jiang
    • 1
  1. 1.Engineering Bionics Lab, Department of Systems Design EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.State Key Lab of Mechanical System and VibrationShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Center for Sensory-Motor Interaction, The Faculty of MedicineAalborg UniversityAalborgDenmark
  4. 4.Department of BioengineeringImperial College LondonLondonUK

Personalised recommendations