Advertisement

Using Portable EEG to Assess Human Visual Attention

  • Olave E. KrigolsonEmail author
  • Chad C. Williams
  • Francisco L. Colino
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10284)

Abstract

Over the past ten years there has been a rapid increase in the number of portable electroencephalographic (EEG) systems available to researchers. However, to date, there has been little work validating these systems for event-related potential (ERP) research. Here we demonstrate that the MUSE portable EEG system can be used to quickly assess and quantify the ERP responses associated with visuospatial attention. Specifically, in the present experiment we had participants complete a standard “oddball” task wherein they saw a series of infrequently (targets) and frequently (control) appearing circles while EEG data was recorded from a MUSE headband. For task performance, participants were instructed to count the number of target circles that they saw. After the experiment, an analysis of the EEG data evoked by the target circles when contrasted with the EEG data evoked by the control circles revealed two ERP components – the N200 and the P300. The N200 is typically associated with stimulus/perceptual processing whereas the P300 is typically associated with a variety of cognitive processes including the allocation of visuospatial attention [1]. It is important to note that the physical manifestation of the N200 and P300 ERP components differed from reports using standard EEG systems; however, we have validated that this is due to the quantification of these ERP components at non-standard electrode locations. Importantly, our results demonstrate that a portable EEG system such as the MUSE can be used to examine the ERP responses associated with the allocation of visuospatial attention.

Keywords

EEG ERP Attention Visuospatial attention Portable technology 

References

  1. 1.
    Patel, S.H., Azzam, P.N.: Characterization of N200 and P300: selected studies of the event-related potential. Int. J. Med. Sci. 2(4), 147–154 (2005)CrossRefGoogle Scholar
  2. 2.
    Picton, T.W., Bentin, S., Berg, P., Donchin, E., Hillyard, S.A., Johnson, R., et al.: Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology 37(02), 127–152 (2000)CrossRefGoogle Scholar
  3. 3.
    Coles, M.G.H., Gratton, G., Kramer, A.F., Miller, G.A.: Principles of signal acquisition and analysis. In: Psychophysiology: Systems, Processes and Applications, pp. 183–221 (1986)Google Scholar
  4. 4.
    Kutas, M.: Views on how the electrical activity that the brain generates reflects the functions of different language structures. Psychophysiology 34(4), 383–398 (1997)CrossRefGoogle Scholar
  5. 5.
    Srinivasan, R., Tucker, D.M., Murias, M.: Estimating the spatial Nyquist of the human EEG. Behav. Res. Methods Instrum. Comput. 30(1), 8–19 (1998)CrossRefGoogle Scholar
  6. 6.
    Cadwell, J.A., Villarreal, R.A.: Electrophysiologic equipment and electrical safety. In: Aminoff, M.J. (ed.) Electrodiagnosis in clinical neurology 4, pp. 15–33. Churchill Livingstone, New York (1999)Google Scholar
  7. 7.
    Badcock, N.A., Mousikou, P., Mahajan, Y., de Lissa, P., Thie, J., McArthur, G.: Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs. PeerJ 1, e38 (2013)CrossRefGoogle Scholar
  8. 8.
    Badcock, N.A., Preece, K.A., de Wit, B., Glenn, K., Fieder, N., Thie, J., McArthur, G.: Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children. PeerJ 3, e907 (2015)CrossRefGoogle Scholar
  9. 9.
    Debener, S., Minow, F., Emkes, R., Gandras, K., de Vos, M.: How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 49, 1617–1621 (2012)CrossRefGoogle Scholar
  10. 10.
    Duvinage, M., Castermans, T., Petieau, M., Hoellinger, T., Cheron, G., Dutoit, T.: Performance of the Emotiv Epoc headset for P300-based applications. Biomed. Eng. online 12(1), 56 (2013)CrossRefGoogle Scholar
  11. 11.
    Gramann, K., Ferris, D.P., Gwin, J., Makeig, S.: Imaging natural cognition in action. Int. J. Psychophysiol. 91, 22–29 (2014)CrossRefGoogle Scholar
  12. 12.
    Kuziek, J.W., Shienh, A., Mathewson, K.E.: Transitioning EEG experiments away from the laboratory using a Raspberry Pi 2. J. Neurosci. Methods 277, 75–82 (2017)CrossRefGoogle Scholar
  13. 13.
    Maskeliunas, R., Damasevicius, R., Martisius, I., Vasiljevas, M.: Consumer-grade EEG devices: are they usable for control tasks? PeerJ 4, e1746 (2016)CrossRefGoogle Scholar
  14. 14.
    Wascher, E., Heppner, H., Hoffmann, S.: Towards the measurement of event-related EEG activity in real-life working environments. Int. J. Psychophysiol. 91(1), 3–9 (2014)CrossRefGoogle Scholar
  15. 15.
    Hoffman, J.E.: Event-related potentials and automatic and controlled processes. In: Rohrbaugh, J.W., Parasuraman, R., Johnson Jr., R. (eds.) Event Related Brain Potentials, pp. 145–157. Oxford University Press, New York (1990)Google Scholar
  16. 16.
    Sams, M., Alho, K., Näätänen, R.: Sequential effects on the ERP in discriminating two stimuli. Biol. Psychol. 17, 41–58 (1983)CrossRefGoogle Scholar
  17. 17.
    Folstein, J.R., Van Petten, C.: Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology 45, 152–170 (2008)CrossRefGoogle Scholar
  18. 18.
    Donchin, E., Coles, M.G.H.: Is the P300 component a manifestation of context updating? Behav. Brain Sci. 11(3), 357–427 (1988)CrossRefGoogle Scholar
  19. 19.
    Duncan-Johnson, C.C., Donchin, E.: On quantifying surprise: the variation in event-related potentials with subjective probability. Psychophysiology 14, 456–467 (1977)CrossRefGoogle Scholar
  20. 20.
    Duncan-Johnson, C.C., Donchin, E.: The P300 component of the event-related brain potential as an index of information processing. Biol. Psychol. 14, 1–52 (1983)CrossRefGoogle Scholar
  21. 21.
    Gray, H.M., Ambady, N., Lowenthal, W.T., Deldin, P.: P300 as an index of attention to self-relevant stimuli. J. Exp. Soc. Psychol. 40, 216–224 (2004)CrossRefGoogle Scholar
  22. 22.
    Johnson Jr., R.: The amplitude of the P300 component of the event-related potential: review and synthesis. Adv. Psychophysiol. 3, 69–137 (1988)Google Scholar
  23. 23.
    Brainard, D.H.: The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997)CrossRefGoogle Scholar
  24. 24.
    Luck, S.J., Woodman, G.F., Vogel, E.K.: Event related potential studies of attention. Trends Cogn. Sci. 4(11), 432–440 (2000)CrossRefGoogle Scholar
  25. 25.
    Vos, M.D., Gandras, K., Debener, S.: Towards a truly mobile brain computer interface: exploring the P300 to take away. Int. J. Psychophysiol. 91, 46–53 (2014)CrossRefGoogle Scholar
  26. 26.
    Wong, S.W.H., Chan, R.H.M., Mak, J.N.: Spectral modulation of frontal EEG during motor skill acquisition: a mobile EEG study. Int. J. Psychophysiol. 91, 16–21 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Olave E. Krigolson
    • 1
    Email author
  • Chad C. Williams
    • 1
  • Francisco L. Colino
    • 1
  1. 1.Neuroeconomics LaboratoryUniversity of VictoriaVictoriaCanada

Personalised recommendations