Advertisement

Content Feature Extraction in the Context of Social Media Behavior

  • Shai Neumann
  • Charles Li
  • Chloe Lo
  • Corinne Lee
  • Shakeel RajwaniEmail author
  • Suraj Sood
  • Buttons A. Foster
  • Toni Hadgis
  • Yaniv Savir
  • Frankie Michaels
  • Alexis-Walid Ahmed
  • Nikki Bernobic
  • Markus Hollander
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10284)

Abstract

Twitter accounts are used for a multitude of reasons, including social, commercial, political, religious, and ideological purposes. The wide variety of activities on Twitter may be automated or non-automated. Any serious attempt to explore the nature of the vast amount of information being broadcast over such a medium may depend on identifying a potentially useful set of content features hidden within the data. This paper proposes a set of content features that may be promising in efforts to categorize social media activities, with the goal of creating predictive models that will classify or estimate the probabilities of automated behavior given certain account content history. Suggestions for future work are offered.

Keywords

Twitter Social media Content feature extraction 

References

  1. 1.
    Alarifi, A., Alsaleh, M., Al-Salman, A.: Twitter turing test: identifying social machines. Inf. Sci. 372, 332–346 (2016). doi: 10.1016/j.ins.2016.08.036 CrossRefGoogle Scholar
  2. 2.
    Carapinha, F., et al.: Modeling of social media behaviors using only account metadata. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) AC 2016. LNCS (LNAI), vol. 9744, pp. 393–401. Springer, Cham (2016). doi: 10.1007/978-3-319-39952-2_38 Google Scholar
  3. 3.
    Chu, Z., Gianvecchio, S., Jajodia, S., Wang, H.: Detecting automation of Twitter accounts: are you a human, bot, or cyborg? IEEE Trans. Dependable Sec. Comput. 9, 811–824 (2012)CrossRefGoogle Scholar
  4. 4.
    Dickerson, J.P., Kagan, V., Subrahmanian, V.: Using sentiment to detect bots on Twitter: are humans more opinionated than bots? In: 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014) (2014). doi: 10.1109/asonam.2014.6921650
  5. 5.
    A framework for twitter bot analysis. In: Proceedings of the 25th International Conference Companion on World Wide Web - WWW 2016 Companion (2016). doi: 10.1145/2872518.2889360
  6. 6.
    Main, W., Shekokhar, N.: Twitterati Identification System (2015). http://www.sciencedirect.com/science/article/pii/S1877050915003129. Accessed 29 Jan 2017
  7. 7.
    Hancock, M.: Automating the characterization of social media culture, social context, and mood. In: 2014 Science of Multi-Intelligence Conference (SOMI), Chantilly, VA (2014)Google Scholar
  8. 8.
    Hancock, M., Sessions, C., Lo, C., Rajwani, S., Kresses, E., Bleasdale, C., Strohschein, D.: Stability of a type of cross-cultural emotion modeling in social media. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) AC 2015. LNCS (LNAI), vol. 9183, pp. 410–417. Springer, Cham (2015). doi: 10.1007/978-3-319-20816-9_39 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Shai Neumann
    • 1
  • Charles Li
    • 2
  • Chloe Lo
    • 3
  • Corinne Lee
    • 3
  • Shakeel Rajwani
    • 3
    Email author
  • Suraj Sood
    • 3
  • Buttons A. Foster
    • 3
  • Toni Hadgis
    • 3
  • Yaniv Savir
    • 3
  • Frankie Michaels
    • 3
  • Alexis-Walid Ahmed
    • 3
  • Nikki Bernobic
    • 3
  • Markus Hollander
    • 3
  1. 1.Eastern Florida State CollegeMelbourneUSA
  2. 2.Mercy CollegeDobbs FerryUSA
  3. 3.Sirius17MelbourneUSA

Personalised recommendations