Advertisement

Classifying Tweets Using User Account Information

  • John Khoury
  • Charles Li
  • Chloe Lo
  • Corinne Lee
  • Shakeel RajwaniEmail author
  • David Woolfolk
  • Alexis-Walid Ahmed
  • Loredana Crusov
  • Arnold Pérez-Goicochea
  • Christopher Romero
  • Rob French
  • Vasco Ribeiro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10284)

Abstract

Twitter is a short-text message system developed 6 years ago. It now has more than 100 million users generating over 300 million tweets every day. Twitter accounts are used for diverse purposes, such as social, advertising, political, religious, benevolent or vicious ideologies, among other activities. These activities can be communicated by humans, a machine or a robot. The purpose of this paper is to build predictive models, such as Logistic Regression, K Nearest Neighbors and Neural Network in order to identify the best variables that help predict, based on the contents, whether the tweets are coming from a human or a machine with the least possible error.

Keywords

Twitter Social media Predictive models 

References

  1. 1.
    Alarifi, A., Alsaleh, M., Al-Salman, A.: Twitter turing test: identifying social machines. Inf. Sci. 372, 332–346 (2016). doi: 10.1016/j.ins.2016.08.036 CrossRefGoogle Scholar
  2. 2.
    Azaria, A., Durst, S., Ferrara, E., Flammini, A., Galstyan, A., Kagan, V., Lerman, K., Menczer, F., Subrahmanian, V.S., Zhu, L.: The DARPA Twitter bot challenge. IEEE Comput. 49, 38–46 (2016)Google Scholar
  3. 3.
    Benton, M.C., Radziwill, N.M.: Bot or Not? Deciphering Time Maps for Tweet Interarrivals. CoRR, abs/1605.06555 (2016)Google Scholar
  4. 4.
    Carapinha, F., et al.: Modeling of social media behaviors using only account metadata. In: Schmorrow, D., Fidopiastis, M. (eds.) AC 2016. LNCS, vol. 9744, pp. 393–401. Springer, Cham (2016). doi: 10.1007/978-3-319-39952-2_38 Google Scholar
  5. 5.
    Gilani, Z., Wang, L., Crowcroft, J., Almeida, M., Farahbakhsh, R.: Stweeler: a framework for Twitter bot analysis. In: Proceedings of the 25th International Conference Companion on World Wide Web - WWW 2016 Companion (2016). doi: 10.1145/2872518.2889360
  6. 6.
    Kolesnikov, D.A., Ovchinnikov, G.V., Oseledets, I.V.: Algebraic reputation model RepRank and its application to spambot detection. CoRR, abs/1411.5995 (2014)Google Scholar
  7. 7.
    Hancock, M.: Automating the characterization of social media culture, social context, and mood. In: 2014 Science of Multi-Intelligence Conference (SOMI), Chantilly, VA (2014)Google Scholar
  8. 8.
    Hancock, M., Sessions, C., Lo, C., Rajwani, S., Kresses, E., Bleasdale, C., Strohschein, D.: Stability of a type of cross-cultural emotion modeling in social media. In: Schmorrow, D., Fidopiastis, C. (eds.) AC 2015. LNCS, vol. 9183, pp. 410–417. Springer, Cham (2015). doi: 10.1007/978-3-319-20816-9_39 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • John Khoury
    • 1
  • Charles Li
    • 2
  • Chloe Lo
    • 3
  • Corinne Lee
    • 3
  • Shakeel Rajwani
    • 3
    Email author
  • David Woolfolk
    • 3
  • Alexis-Walid Ahmed
    • 3
  • Loredana Crusov
    • 3
  • Arnold Pérez-Goicochea
    • 3
  • Christopher Romero
    • 3
  • Rob French
    • 3
  • Vasco Ribeiro
    • 3
  1. 1.Eastern Florida State CollegeMelbourneUSA
  2. 2.Mercy CollegeDobbs FerryUSA
  3. 3.Sirius17MelbourneUSA

Personalised recommendations