Facial Expression Recognition from Still Images

  • Bilge Süheyla Akkoca GazioğluEmail author
  • Muhittin Gökmen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10284)


With the development of technology, Facial Expression Recognition (FER) become one of the important research areas in Human Computer Interaction. Changes in the movement of some muscles in face create the facial expressions. By defining these changes, facial expressions can be recognized. In this study, a cascaded structure consists of Local Zernike Moments (LZM), Local XOR Patterns (LXP) and Global Zernike Moments (GZM) methods is proposed for the FER problem. The generally used database is the Extended Chon - Kanade (CK +) in FER problems. The database consists of image sequences of 327 expressions of 118 people. Most FER system includes recognition of 7 classes of emotions happiness, sadness, surprise, anger, disgust, fear and contempt, and we use Library of Support Vector Machines (LIBSVM) classifier for multi class classification with the leave one out cross-validation method. Our overall system performance is measured as 90.34% for FER.


Facial Expression Recognition Local Zernike Moments Local XOR Patterns Global Zernike Moments 


  1. 1.
    Deng, H., Jin, L., Zhen, L., Huang, J.: A New Facial Expression Recognition Method Based on Local Gabor Filter Bank and PCA plus LDA (2007)Google Scholar
  2. 2.
    Shan, C., Gong, S., McOwan, P.W.: Robust facial expression recognition using local binary patterns. IEEE Int. Conf. Image Process. ICIP 2, 370 (2005)Google Scholar
  3. 3.
    Shan, C., Gong, S., McOwan, P.W.: Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis. Comput. 27, 803–816 (2009)CrossRefGoogle Scholar
  4. 4.
    Ahmed, F., Hossain, E., Bari, A., Shihavuddin, A.: Compound local binary pattern (CLBP) for robust facial expression recognition. In: Computational Intelligence and Informatics (CINTI), pp. 391–395 (2011)Google Scholar
  5. 5.
    Jabid, T., Kabir, M.H., Chae, O.: Facial expression recognition using local directional pattern (LDP). In: 17th IEEE International Conference on Image Processing, pp. 1605–1608 (2010)Google Scholar
  6. 6.
    Sariyanidi, E., Gunes, H., Gokmen, M., Cavallaro, A.: Local Zernike moment representation for facial affect recognition. In: BMVC (2013)Google Scholar
  7. 7.
    Rivera, A.R., Castillo, J.R., Chae, O.O.: Local directional number pattern for face analysis: face and expression recognition. IEEE Trans. Image Process. 22, 1740–1752 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chew, S.W., Lucey, S., Lucey, P., Sridharan, S., Conn, J.F.: Improved facial expression recognition via uni-hyperplane classification. In: Computer Vision and Pattern Recognition (CVPR), pp. 2554–2561 (2012)Google Scholar
  9. 9.
    Sariyanidi, E., Dagli, V., Tek, S.C., Tunc, B., Gokmen, M.: Local Zernike moments: a new representation for face recognition. In: 2012 19th IEEE International Conference on Image Processing (ICIP), pp. 585–588 (2012)Google Scholar
  10. 10.
    Kan, C., Srinath, M.D.: Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments. Pattern Recognit. 35, 143–154 (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Zhai, H.L., Hu, F.D., Huang, X.Y., Chen, J.H.: The application of digital image recognition to the analysis of two-dimensional fingerprints. Anal. Chim. Acta 657, 131–135 (2010)CrossRefGoogle Scholar
  12. 12.
    Sim, D.G., Kim, H.K., Park, R.H.: Invariant texture retrieval using modified Zernike moments. Image Vis. Comput. 22, 331–342 (2004)CrossRefGoogle Scholar
  13. 13.
    Khotanzad, A., Hong, Y.H.: Invariant image recognition by Zernike moments. Pattern Anal. Mach. Intell. 12, 489–497 (1990)CrossRefGoogle Scholar
  14. 14.
    Mukundan R., Ramakrishnan K.R.: Moment Functions in Image Analysis: Theory and Applications (1998)Google Scholar
  15. 15.
  16. 16.
    Chong, C.W., Raveendran, P., Mukundan, R.: A comparative analysis of algorithms for fast computation of Zernike moments. Pattern Recognit. 36, 731–742 (2003)CrossRefzbMATHGoogle Scholar
  17. 17.
    Basaran, E.: Traffic sign classification with quantized local Zernike moments. Istanbul technical University (2013)Google Scholar
  18. 18.
    Xie, S., Shan, S., Chen, X., Chen, J.: Fusing local patterns of Gabor magnitude and phase for face recognition. Trans. Image Process. 19, 1349–1391 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kanade, T., Cohn, J.F., Tian, Y.: Comprehensive database for facial expression analysis. In: Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 46–53 (2000)Google Scholar
  20. 20.
    Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kanade Dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 94–101 (2010)Google Scholar
  21. 21.
    Akkoca, B.S., Gokmen, M.: Facial expression recognition using local Zernike moments signal processing and applications (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Bilge Süheyla Akkoca Gazioğlu
    • 1
    Email author
  • Muhittin Gökmen
    • 2
  1. 1.Istanbul Technical UniversityIstanbulTurkey
  2. 2.MEF UniversityIstanbulTurkey

Personalised recommendations