Neural Dynamics of Spontaneous Thought: An Electroencephalographic Study

  • Manesh GirnEmail author
  • Caitlin Mills
  • Eric Laycock
  • Melissa Ellamil
  • Lawrence Ward
  • Kalina Christoff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10284)


Spontaneous thinking is a ubiquitous aspect of our mental life and has increasingly become a hot topic of research in cognitive neuroscience. To date, functional neuroimaging studies of spontaneous thought have revealed general brain recruitment centered on a combination of default mode network and executive regions. Despite recent findings about general brain recruitment, very little is known about how these regions are recruited dynamically over time. The current research addresses this gap in the literature by using EEG to investigate the fine-grained temporal dynamics of brain activity underlying spontaneous thoughts. We employed the first-person reports of experienced meditators to index the onset of spontaneous thoughts, and examined brain electrical activity preceding indications of spontaneous thought onset. An independent component analysis-based source localization procedure recovered sources very similar to those previously found with fMRI (Ellamil et al. in NeuroImage 136:186–196, 2016). In addition, phase synchrony analyses revealed a temporal trajectory that begins with default network midline and salience network connectivity, followed by the incorporation of language and executive regions during the period from thought generation to appraisal.


Spontaneous thought Neural dynamics Electroencephalography Default mode network Frontoparietal control network Independent-component analysis 


  1. 1.
    Christoff, K., Irving, Z.C., Fox, K.C., Spreng, R.N., Andrews-Hanna, J.R.: Mind-wandering as spontaneous thought: a dynamic framework. Nat. Rev. Neurosci. 17, 718–731 (2016)CrossRefGoogle Scholar
  2. 2.
    Baird, B., Smallwood, J., Schooler, J.W.: Back to the future: autobiographical planning and the functionality of mind-wandering. Conscious. Cogn. 20, 1604–1611 (2011)CrossRefGoogle Scholar
  3. 3.
    Unsworth, N., McMillan, B.D.: Mind wandering and reading comprehension: examining the roles of working memory capacity, interest, motivation, and topic experience. J. Exp. Psychol. Learn. Mem. Cogn. 39, 832 (2013)CrossRefGoogle Scholar
  4. 4.
    Mrazek, M.D., Smallwood, J., Franklin, M.S., Chin, J.M., Baird, B., Schooler, J.W.: The role of mind-wandering in measurements of general aptitude. J. Exp. Psychol. Gen. 141, 788 (2012)CrossRefGoogle Scholar
  5. 5.
    Smallwood, J., Schooler, J.W.: The science of mind wandering: empirically navigating the stream of consciousness. Annu. Rev. Psychol. 66, 487–518 (2015)CrossRefGoogle Scholar
  6. 6.
    Mooneyham, B.W., Schooler, J.W.: The costs and benefits of mind-wandering: a review. Can. J. Exp. Psychol. 67, 11–18 (2013)CrossRefGoogle Scholar
  7. 7.
    Fox, K.C.R., Spreng, R.N., Ellamil, M., Andrews-Hanna, J.R., Christoff, K.: The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage 111, 611–621 (2015)CrossRefGoogle Scholar
  8. 8.
    Andrews-Hanna, J.R., Smallwood, J., Spreng, R.N.: The default network and self-generated thought: component processes and dynamic control. Ann. New York Acad. Sci. 1316, 29–52 (2014)CrossRefGoogle Scholar
  9. 9.
    Vincent, J.L., Kahn, I., Snyder, A.Z., Raichle, M.E., Buckner, R.L.: Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J. Neurophysiol. 100, 3328–3342 (2008)CrossRefGoogle Scholar
  10. 10.
    Ellamil, M., Dobson, C., Beeman, M., Christoff, K.: Evaluative and generative modes of thought during the creative process. NeuroImage 59, 1783–1794 (2012)CrossRefGoogle Scholar
  11. 11.
    Ellamil, M., Fox, K.C., Dixon, M.L., Pritchard, S., Todd, R.M., Thompson, E., Christoff, K.: Dynamics of neural recruitment surrounding the spontaneous arising of thoughts in experienced mindfulness practitioners. NeuroImage 136, 186–196 (2016)CrossRefGoogle Scholar
  12. 12.
    Zabelina, D.L., Andrews-Hanna, J.R.: Dynamic network interactions supporting internally-oriented cognition. Curr. Opin. Neurobiol. 40, 86–93 (2016)CrossRefGoogle Scholar
  13. 13.
    Dixon, M.L., Andrews-Hanna, J.R., Spreng, R.N., Irving, Z.C., Mills, C., Girn, M., Christoff, K.: Interactions between the default network and dorsal attention network vary across default subsystems, time, and cognitive states. NeuroImage 147, 632–649 (2016)CrossRefGoogle Scholar
  14. 14.
    Nisbett, R.E., Wilson, T.D.: Telling more than we can know: verbal reports on mental processes. Psychol. Rev. 84, 231 (1977)CrossRefGoogle Scholar
  15. 15.
    Varela, F.J.: Neurophenomenology: a methodological remedy for the hard problem. J. Conscious. Stud. 3, 330–349 (1996)Google Scholar
  16. 16.
    Lutz, A., Thompson, E.: Neurophenomenology: integrating subjective experience and brain dynamics in the neuroscience of consciousness. J. Conscious. Stud. 10, 31–52 (2003)Google Scholar
  17. 17.
    Lutz, A., Slagter, H.A., Dunne, J.D., Davidson, R.J.: Attention regulation and monitoring in meditation. Trends Cogn. Sci. 12, 163–169 (2008)CrossRefGoogle Scholar
  18. 18.
    Tang, Y.-Y., Hölzel, B.K., Posner, M.I.: The neuroscience of mindfulness meditation. Nat. Rev. Neurosci. 16, 213–225 (2015)CrossRefGoogle Scholar
  19. 19.
    Nielsen, L., Kaszniak, A.W.: Awareness of subtle emotional feelings: a comparison of long-term meditators and nonmeditators. Emotion 6, 392 (2006)CrossRefGoogle Scholar
  20. 20.
    Fox, K.C.R., Zakarauskas, P., Dixon, M.L., Ellamil, M., Thompson, E., Christoff, K.: Meditation experience predicts introspective accuracy. PLoS ONE 7, e45370 (2012)CrossRefGoogle Scholar
  21. 21.
    Baird, B., Mrazek, M.D., Phillips, D.T., Schooler, J.W.: Domain-specific enhancement of metacognitive ability following meditation training. J. Exp. Psychol. Gen. 143, 1972 (2014)CrossRefGoogle Scholar
  22. 22.
    Kozasa, E.H., Sato, J.R., Lacerda, S.S., Barreiros, M.A., Radvany, J., Russell, T.A., Sanches, L.G., Mello, L.E., Amaro Jr., E.: Meditation training increases brain efficiency in an attention task. NeuroImage 59, 745–749 (2012)CrossRefGoogle Scholar
  23. 23.
    Lutz, A., Slagter, H.A., Rawlings, N.B., Francis, A.D., Greischar, L.L., Davidson, R.J.: Mental training enhances attentional stability: neural and behavioral evidence. J. Neurosci. 29, 13418–13427 (2009)CrossRefGoogle Scholar
  24. 24.
    MacLean, K.A., Ferrer, E., Aichele, S.R., Bridwell, D.A., Zanesco, A.P., Jacobs, T.L., King, B.G., Rosenberg, E.L., Sahdra, B.K., Shaver, P.R.: Intensive meditation training improves perceptual discrimination and sustained attention. Psychol. Sci. 21, 829–839 (2010)CrossRefGoogle Scholar
  25. 25.
    Slagter, H.A., Lutz, A., Greischar, L.L., Francis, A.D., Nieuwenhuis, S., Davis, J.M., Davidson, R.J.: Mental training affects distribution of limited brain resources. PLoS Biol. 5, e138 (2007)CrossRefGoogle Scholar
  26. 26.
    Kirschner, A., Kam, J.W.Y., Handy, T.C., Ward, L.M.: Differential synchronization in default and task-specific networks of the human brain. Front. Hum. Neurosci. 6, 139 (2012)CrossRefGoogle Scholar
  27. 27.
    Niendam, T.A., Laird, A.R., Ray, K.L., Dean, Y.M., Glahn, D.C., Carter, C.S.: Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn. Affect. Behav. Neurosci. 12, 241–268 (2012)CrossRefGoogle Scholar
  28. 28.
    Foster, B.L., Kaveh, A., Dastjerdi, M., Miller, K.J., Parvizi, J.: Human retrosplenial cortex displays transient theta phase locking with medial temporal cortex prior to activation during autobiographical memory retrieval. J. Neurosci. 33, 10439–10446 (2013)CrossRefGoogle Scholar
  29. 29.
    Greicius, M.D., Supekar, K., Menon, V., Dougherty, R.F.: Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19, 72–78 (2008)CrossRefGoogle Scholar
  30. 30.
    Foster, B.L., Rangarajan, V., Shirer, W.R., Parvizi, J.: Intrinsic and task-dependent coupling of neuronal population activity in human parietal cortex. Neuron 86, 578–590 (2015)CrossRefGoogle Scholar
  31. 31.
    Kiss, G.R., Armstrong, C., Milroy, R., Piper, J.: An associative thesaurus of English and its computer analysis. Comput. Literary Stud. 153–165 (1973)Google Scholar
  32. 32.
    Klinger, E., Cox, W.M.: Dimensions of thought flow in everyday life. Imagination Cogn. Pers. 7, 105–128 (1987)CrossRefGoogle Scholar
  33. 33.
    Wilson, M., Psycholinguistic, M.R.C.: Database: machine-usable dictionary, version 2.00. Behav. Res. Methods, Instrum. Comput. 20, 6–10 (1988)CrossRefGoogle Scholar
  34. 34.
    Sayadaw, M., Maung, T.N.: Fundamentals of Vipassana Meditation (2002)Google Scholar
  35. 35.
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004)CrossRefGoogle Scholar
  36. 36.
    Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159 (1995)CrossRefGoogle Scholar
  37. 37.
    Viola, F.C., Thorne, J., Edmonds, B., Schneider, T., Eichele, T., Debener, S.: Semi-automatic identification of independent components representing EEG artifact. Clin. Neurophysiol. 120, 868–877 (2009)CrossRefGoogle Scholar
  38. 38.
    Palva, S., Palva, J.M.: Functional roles of alpha-band phase synchronization in local and large-scale cortical networks. Front. Psychol. 2, 204 (2011)CrossRefGoogle Scholar
  39. 39.
    Green, J.J., McDonald, J.J.: Electrical neuroimaging reveals timing of attentional control activity in human brain. PLoS Biol. 6, e81 (2008)CrossRefGoogle Scholar
  40. 40.
    Doesburg, S.M., Bedo, N., Ward, L.M.: Top-down alpha oscillatory network interactions during visuospatial attention orienting. NeuroImage 132, 512–519 (2016)CrossRefGoogle Scholar
  41. 41.
    Cooper, N.R., Burgess, A.P., Croft, R.J., Gruzelier, J.H.: Investigating evoked and induced electroencephalogram activity in task-related alpha power increases during an internally directed attention task. NeuroReport 17, 205–208 (2006)CrossRefGoogle Scholar
  42. 42.
    Delorme, A., Palmer, J., Onton, J., Oostenveld, R., Makeig, S.: Independent EEG sources are dipolar. PLoS ONE 7, e30135 (2012)CrossRefGoogle Scholar
  43. 43.
    Squire, L.R., Stark, C.E., Clark, R.E.: The medial temporal lobe. Annu. Rev. Neurosci. 27, 279–306 (2004)CrossRefGoogle Scholar
  44. 44.
    Spreng, R.N., Mar, R.A., Kim, A.S.: The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 21, 489–510 (2009)CrossRefGoogle Scholar
  45. 45.
    Luck, S.J.: An Introduction to the Event-Related Potential Technique. MIT Press, Cambridge (2014)Google Scholar
  46. 46.
    Bedo, N., Ribary, U., Ward, L.M.: Fast dynamics of cortical functional and effective connectivity during word reading. PLoS ONE 9, e88940 (2014)CrossRefGoogle Scholar
  47. 47.
    Seeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna, H., Reiss, A.L., Greicius, M.D.: Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007)CrossRefGoogle Scholar
  48. 48.
    Jobard, G., Crivello, F., Tzourio-Mazoyer, N.: Evaluation of the dual route theory of reading: a metanalysis of 35 neuroimaging studies. NeuroImage 20, 693–712 (2003)CrossRefGoogle Scholar
  49. 49.
    Menon, V., Uddin, L.Q.: Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214, 655–667 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Manesh Girn
    • 1
    Email author
  • Caitlin Mills
    • 1
  • Eric Laycock
    • 1
  • Melissa Ellamil
    • 2
  • Lawrence Ward
    • 1
  • Kalina Christoff
    • 1
  1. 1.University of British ColumbiaVancouverCanada
  2. 2.Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany

Personalised recommendations