Smart Watch Potential to Support Augmented Cognition for Health-Related Decision Making

  • Blaine ReederEmail author
  • Paul F. Cook
  • Paula M. Meek
  • Mustafa Ozkaynak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10284)


In this paper, we review current smart watch research in the health domain to inform an Augmented Cognition (AugCog) research agenda for health-related decision making and patient self-management. We connect this AugCog research agenda to prior Clinical Decision Support (CDS), workflow, and informatics research efforts using Persons Living With HIV (PLWH) and Chronic Obstructive Pulmonary Disorder (COPD) patients as examples to illustrate potential research directions.


Smart watch Smartwatch Consumer health Health behavior Usability 


  1. 1.
    Rawassizadeh, R., Price, B.A., Petre, M.: Wearables: has the age of smartwatches finally arrived? Commun. ACM 58, 45–47 (2015)CrossRefGoogle Scholar
  2. 2.
    Reeder, B., David, A.: Health at hand: a systematic review of smart watch uses for health and wellness. J. Biomed. Inform. 63, 269–276 (2016)CrossRefGoogle Scholar
  3. 3.
    Lu, T.-C., Fu, C.-M., Ma, M.-M., Fang, C.-C., Turner, A.M.: Healthcare applications of smart watches. Appl. Clin. Inform. 7, 850–869 (2016)CrossRefGoogle Scholar
  4. 4.
    Cook, P.F., Hartson, K.R., Schmiege, S.J., Jankowski, C., Starr, W., Meek, P.: Bidirectional relationships between fatigue and everyday experiences in persons living with HIV. Res. Nurs. Health 39, 154–163 (2016)CrossRefGoogle Scholar
  5. 5.
    Langness, J., Cook, P.F., Gill, J., Boggs, R., Netsanet, N.: Comparison of adherence rates for antiretroviral, blood pressure, or mental health medications for HIV-positive patients at an academic medical center outpatient pharmacy. J. Managed Care Pharm. 20, 809–814 (2014)CrossRefGoogle Scholar
  6. 6.
    Cook, P.F., Carrington, J.M., Schmiege, S.J., Starr, W., Reeder, B.: A counselor in your pocket: feasibility of mobile health tailored messages to support HIV medication adherence. Patient Prefer. Adherence 9, 1353 (2015)CrossRefGoogle Scholar
  7. 7.
    Cook, P.F., McElwain, C.J., Bradley-Springer, L.A.: Brief report on ecological momentary assessment: everyday states predict HIV prevention behaviors. BMC Res. Notes 9, 9 (2016)CrossRefGoogle Scholar
  8. 8.
    Mason, L.M., Meek, P.M.: Cognitive function patterns In: COPD C107. New Interventions and Outcomes in Pulmonary Rehabilitation, p. A5290. American Thoracic Society (2015)Google Scholar
  9. 9.
    Effing, T.W., Vercoulen, J.H., Bourbeau, J., Trappenburg, J., Lenferink, A., Cafarella, P., Coultas, D., Meek, P., van der Valk, P., Bischoff, E.W.: Definition of a COPD self-management intervention. In: International Expert Group consensus. European Respiratory Journal ERJ-00025-02016 (2016)Google Scholar
  10. 10.
    Sood, A., Petersen, H., Qualls, C., Meek, P.M., Vasquez-Guillamet, R., Celli, B.R., Tesfaigzi, Y.: Analysis of severity staging of chronic bronchitis reveals frequent instability of diagnosis. B43. COPD: Phenotypes and Clinical Outcomes, p. A3524. American Thoracic Society (2016)Google Scholar
  11. 11.
    Meek, P.M., Petersen, H., Washko, G.R., Diaz, A.A., Kim, V., Sood, A., Tesfaigzi, Y.: Chronic bronchitis is associated with worse symptoms and quality of life than chronic airflow obstruction. CHEST J. 148, 408–416 (2015)CrossRefGoogle Scholar
  12. 12.
    Fan, V.S., Meek, P.M.: Anxiety, depression, and cognitive impairment in patients with chronic respiratory disease. Clin. Chest Med. 35, 399–409 (2014)CrossRefGoogle Scholar
  13. 13.
    Ozkaynak, M., Brennan, P.F., Hanauer, D.A., Johnson, S., Aarts, J., Zheng, K., Haque, S.N.: Patient-centered care requires a patient-oriented workflow model. J. Am. Med. Inform. Assoc. 20, e14–e16 (2013)CrossRefGoogle Scholar
  14. 14.
    Ozkaynak, M., Unertl, K.M., Johnson, S.A., Brixey, J.J., Haque, S.N.: Clinical workflow analysis, process redesign, and quality improvement. In: Finnell, J.T., Dixon, B.E. (eds.) Clinical Informatics Study Guide, pp. 135–161. Springer, Cham (2016). doi: 10.1007/978-3-319-22753-5_7 CrossRefGoogle Scholar
  15. 15.
    Ozkaynak, M., Johnson, S.A., Tulu, B., Donovan, J.L., Kanaan, A.O., Rose, A.: Exploring the effect of complex patients on care delivery tasks. Int. J. Health Care Qual. Assur. 28, 494–509 (2015)CrossRefGoogle Scholar
  16. 16.
    Ozkaynak, M., Johnson, S., Shimada, S., Petrakis, B.A., Tulu, B., Archambeault, C., Fix, G., Schwartz, E., Woods, S.: Examining the multi-level fit between work and technology in a secure messaging implementation. In: AMIA Annual Symposium Proceedings, vol. 2014, p. 954. American Medical Informatics Association (2014)Google Scholar
  17. 17.
    Ozkaynak, M., Jones, J., Weiss, J., Klem, P., Reeder, B.: A workflow framework for health management in daily living settings. Stud. Health Technol. Inform. 225, 392–396 (2016)Google Scholar
  18. 18.
    Ozkaynak, M.: Capturing self management of chronic disease in daily life. In: 48th Annual Communicating Nursing Research Conference (22–25 April 2015) (2015)Google Scholar
  19. 19.
    Schmorrow, D., Kruse, A.A.: DARPA’s augmented cognition program-tomorrow’s human computer interaction from vision to reality: building cognitively aware computational systems. In: Proceedings of the 2002 IEEE 7th Conference on Human Factors and Power Plants, p. 7. IEEE (2002)Google Scholar
  20. 20.
    Fuchs, S., Hale, K.S., Axelsson, P.: Augmented cognition can increase human performance in the control room. In: 2007 IEEE 8th Human Factors and Power Plants and HPRCT 13th Annual Meeting, pp. 128–132. IEEE (2007)Google Scholar
  21. 21.
    Reeves, L.M., Schmorrow, D.D., Stanney, K.M.: Augmented cognition and cognitive state assessment technology – near-term, mid-term, and long-term research objectives. In: Schmorrow, D.D., Reeves, L.M. (eds.) FAC 2007. LNCS, vol. 4565, pp. 220–228. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-73216-7_25 CrossRefGoogle Scholar
  22. 22.
    Sim, I., Gorman, P., Greenes, R.A., Haynes, R.B., Kaplan, B., Lehmann, H., Tang, P.C.: Clinical decision support systems for the practice of evidence-based medicine. J. Am. Med. Inform. Assoc. 8, 527–534 (2001)CrossRefGoogle Scholar
  23. 23.
    Sittig, D.F., Wright, A., Osheroff, J.A., Middleton, B., Teich, J.M., Ash, J.S., Campbell, E., Bates, D.W.: Grand challenges in clinical decision support. J. Biomed. Inform. 41, 387–392 (2008)CrossRefGoogle Scholar
  24. 24.
    Dorneich, M.C., Whitlow, S.D., Ververs, P.M., Rogers, W.H.: Mitigating cognitive bottlenecks via an augmented cognition adaptive system. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 937–944. IEEE (2003)Google Scholar
  25. 25.
    Friedman, C.P.: A “Fundamental Theorem” of Biomedical Informatics. J. Am. Med. Inform. Assoc. 16, 169 (2009)CrossRefGoogle Scholar
  26. 26.
    Navarro, R.F., Rodriguez, M.D., Favela, J.: Intervention tailoring in augmented cognition systems for elders with dementia. IEEE J. Biomed. Health Inform. 18, 361–367 (2014)CrossRefGoogle Scholar
  27. 27.
    Glenn, L.M., Boyce, J.A.S.: At the nexus: augmented cognition, health care, and the law. J. Cogn. Eng. Decis. Making 1, 363–373 (2007)CrossRefGoogle Scholar
  28. 28.
    Alam, M.A.U., Roy, N., Holmes, S., Gangopadhyay, A., Galik, E.: Automated functional and behavioral health assessment of older adults with dementia. In: 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), pp. 140–149. IEEE (2016)Google Scholar
  29. 29.
    Karsh, B.-T.: Clinical practice improvement and redesign: how change in workflow can be supported by clinical decision support. US Department of Health and Human Services. Publication, Agency for Healthcare Research and Quality (2009)Google Scholar
  30. 30.
    Chan, M., Campo, E., Estève, D., Fourniols, J.Y.: Smart homes - current features and future perspectives. Maturitas 64, 90–97 (2009)CrossRefGoogle Scholar
  31. 31.
    Reeder, B., Meyer, E., Lazar, A., Chaudhuri, S., Thompson, H.J., Demiris, G.: Framing the evidence for health smart homes and home-based consumer health technologies as a public health intervention for independent aging: a systematic review. Int. J. Med. Inform. 82, 565–579 (2013)CrossRefGoogle Scholar
  32. 32.
    Liu, L., Stroulia, E., Nikolaidis, I., Miguel-Cruz, A., Rincon, R.A.: Smart homes and home health monitoring technologies for older adults: a systematic review. Int. J. Med. Inform. 91, 44–59 (2016)CrossRefGoogle Scholar
  33. 33.
    Rantz, M.J., Skubic, M., Popescu, M., Galambos, C., Koopman, R.J., Alexander, G.L., Phillips, L.J., Musterman, K., Back, J., Miller, S.J.: A new paradigm of technology-enabled ‘vital signs’ for early detection of health change for older adults. Gerontology 61, 281–290 (2014)CrossRefGoogle Scholar
  34. 34.
    Allet, L., Knols, R.H., Shirato, K., de Bruin, E.D.: Wearable systems for monitoring mobility-related activities in chronic disease: a systematic review. Sens. (Basel, Switzerland) 10, 9026–9052 (2010)CrossRefGoogle Scholar
  35. 35.
    Evenson, K.R., Goto, M.M., Furberg, R.D.: Systematic review of the validity and reliability of consumer-wearable activity trackers. Int. J. Behav. Nutr. Phys. Act. 12, 159 (2015)CrossRefGoogle Scholar
  36. 36.
    Reeder, B., Richard, A., Crosby, M.E.: Technology-supported health measures and goal-tracking for older adults in everyday living. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) AC 2015. LNCS, vol. 9183, pp. 796–806. Springer, Cham (2015). doi: 10.1007/978-3-319-20816-9_76 CrossRefGoogle Scholar
  37. 37.
    Samuel, A., Brush, A., Mahajan, R.: Lab of things: building a research platform for connected devices in the home and beyond. ACM SIGMOBILE Mob. Comput. Commun. Rev. 18, 37–40 (2015)CrossRefGoogle Scholar
  38. 38.
    Brush, A.B., Mahajan, R., Samuel, A.: Lab of things: simplifying and scaling deployments of experimental technology in homes. In: van Hoof, J., Demiris, G., Wouters, E.J.M. (eds.) Handbook of Smart Homes, Health Care and Well-Being, pp. 1–9. Springer, Cham (2014)CrossRefGoogle Scholar
  39. 39.
    Ahanathapillai, V., Amor, J.D., Goodwin, Z., James, C.J.: Preliminary study on activity monitoring using an android smart-watch. Healthcare Technol. Lett. 2, 34–39 (2015)CrossRefGoogle Scholar
  40. 40.
    Thomaz, E., Essa, I., Abowd, G.D.: A practical approach for recognizing eating moments with wrist-mounted inertial sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1029–1040. ACM, Osaka (2015)Google Scholar
  41. 41.
    Kalantarian, H., Alshurafa, N., Sarrafzadeh, M.: Detection of gestures associated with medication adherence using smartwatch-based inertial sensors. IEEE Sens. J. 16, 1054–1061 (2016)CrossRefGoogle Scholar
  42. 42.
    Kamdar, M.R., Wu, M.J.: PRISM: a data-driven platform for monitoring mental health. In: Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, vol. 21, pp. 333–344 (2016)Google Scholar
  43. 43.
    Arsand, E., Muzny, M., Bradway, M., Muzik, J., Hartvigsen, G.: Performance of the first combined smartwatch and smartphone diabetes diary application study. J. Diab. Sci. Technol. 9, 556–563 (2015)CrossRefGoogle Scholar
  44. 44.
    Jovanov, E.: Preliminary analysis of the use of smartwatches for longitudinal health monitoring. In: 2015 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society, pp. 865–868 (2015)Google Scholar
  45. 45.
    Hataji, O., Kobayashi, T., Gabazza, E.C.: Smart watch for monitoring physical activity in patients with chronic obstructive pulmonary disease. Respir. Invest. 54, 294–295 (2016)Google Scholar
  46. 46.
    Feminella, J., Pisharoty, D., Whitehouse, K.: Piloteur: a lightweight platform for pilot studies of smart homes. In: Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings, pp. 110–119. ACM, Memphis (2014)Google Scholar
  47. 47.
    Demiris, G., Thompson, H.: Smart homes and ambient assisted living applications: from data to knowledge - empowering or overwhelming older adults? Contribution of the IMIA smart homes and Ambiant assisted living working group. IMIA Yearb. 2011: Towards Health Inform. 3.0 6, 51–57 (2011)Google Scholar
  48. 48.
    Ratwani, R.M., Fairbanks, R.J., Hettinger, A.Z., Benda, N.C.: Electronic health record usability: analysis of the user-centered design processes of eleven electronic health record vendors. J. Am. Med. Inform. Assoc. 22, 1179–1182 (2015)CrossRefGoogle Scholar
  49. 49.
    Huh, J., Nam, K., Sharma, N.: Finding the lost treasure: understanding reuse of used computing devices. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1875–1878. ACM (2010)Google Scholar
  50. 50.
    Freedson, P.S., Melanson, E., Sirard, J.: Calibration of the computer science and applications, inc. accelerometer. Med. Sci. Sports Exerc. 30, 777–781 (1998)CrossRefGoogle Scholar
  51. 51.
    Lyden, K., Keadle, S.K., Staudenmayer, J., Freedson, P.S.: A method to estimate free-living active and sedentary behavior from an accelerometer. Med. Sci. Sports Exerc. 46, 386–397 (2014)CrossRefGoogle Scholar
  52. 52.
    Ellingson, L.D., Schwabacher, I.J., Kim, Y., Welk, G.J., Cook, D.B.: Validity of an integrative method for processing physical activity data. Med. Sci. Sports Exerc. 48, 1629–1638 (2016)CrossRefGoogle Scholar
  53. 53.
    Lyden, K., Kozey-Keadle, S.L., Staudenmayer, J.W., Freedson, P.S.: Validity of two wearable monitors to estimate breaks from sedentary time. Med. Sci. Sports Exerc. 44, 2243 (2012)CrossRefGoogle Scholar
  54. 54.
    Lazar, A., Koehler, C., Tanenbaum, J., Nguyen, D.H.: Why we use and abandon smart devices. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 635–646. ACM (2015)Google Scholar
  55. 55.
    Wu, L.-H., Wu, L.-C., Chang, S.-C.: Exploring consumers’ intention to accept smartwatch. Comput. Hum. Behav. 64, 383–392 (2016)CrossRefGoogle Scholar
  56. 56.
    Choi, J., Kim, S.: Is the smartwatch an IT product or a fashion product? A study on factors affecting the intention to use smartwatches. Comput. Hum. Behav. 63, 777–786 (2016)CrossRefGoogle Scholar
  57. 57.
    Kim, K.J., Shin, D.-H.: An acceptance model for smart watches: implications for the adoption of future wearable technology. Internet Res. 25, 527–541 (2015)CrossRefGoogle Scholar
  58. 58.
    Chuah, S.H.-W., Rauschnabel, P.A., Krey, N., Nguyen, B., Ramayah, T., Lade, S.: Wearable technologies: the role of usefulness and visibility in smartwatch adoption. Comput. Hum. Behav. 65, 276–284 (2016)CrossRefGoogle Scholar
  59. 59.
    Jung, Y., Kim, S., Choi, B.: Consumer valuation of the wearables: the case of smartwatches. Comput. Hum. Behav. 63, 899–905 (2016)CrossRefGoogle Scholar
  60. 60.
    Friedman, C.P., Wyatt, J.C., Owens, D.K.: Evaluation and technology assessment. In: Shortliffe, E.H., Cimino, J.J. (eds.) Biomedical Informatics: Computer Applications in Health Care and Biomedicine, pp. 403–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  61. 61.
    Crosby, M.E., Iding, M.K., Chin, D.N.: Research on task complexity as a foundation for augmented cognition. In: 2003. Proceedings of the 36th Annual Hawaii International Conference on System Sciences, 9 p. IEEE (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Blaine Reeder
    • 1
    Email author
  • Paul F. Cook
    • 1
  • Paula M. Meek
    • 1
  • Mustafa Ozkaynak
    • 1
  1. 1.University of Colorado College of NursingAuroraUSA

Personalised recommendations