Analysis of Social Interaction Narratives in Unaffected Siblings of Children with ASD Through Latent Dirichlet Allocation

  • Victoria NewtonEmail author
  • Isabel Solis
  • Glory Emmanuel Aviña
  • Jonathan T. McClain
  • Cynthia King
  • Kristina T. Rewin Ciesielski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10284)


Children with autism spectrum disorders (ASD) and their unaffected siblings (US) are frequent targets of social bullying, which leads to severe physical, emotional, and social consequences. Understanding the risk factors is essential for developing preventative measures. We suggest that one such risk factor may be a difficulty to discriminate different biological body movements (BBM), a task that requires fast and flexible processing and interpretation of complex visual cues, especially during social interactions. Deficits in cognition of BBM have been reported in ASD. Since US display an autism endophenotype we expect that they will also display deficits in social interpretation of BBM. Methods. Participants: 8 US, 8 matched TD children, age 7–14; Tasks/Measurements: Social Blue Man Task: Narrative interpretation with a Latent Dirichlet Allocation [LDA] analysis; Social Experience Questionnaires with children and parents. Results. The US displayed as compared to TD: (i) low self-awareness of social bullying in contrast to high parental reports; (ii) reduced speed in identifying social cues; (iii) lower quality and repetitious wording in social interaction narratives (LDA). Conclusions. US demonstrate social endophenotype of autism reflected in delayed identification, interpretation and verbalization of social cues; these may constitute a high risk factor for becoming a victim of social bullying.


Autism spectrum disorder Unaffected siblings Biological body movement Bullying Social narratives LDA 


  1. American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, 5th edn. Washington, DC (2013)Google Scholar
  2. Baron-Cohen, S.: Theory of mind and autism: a fifteen year review. In: Baron-Cohen, S., Tager-Flusberg, H., Cohen, D.J. (eds.) Understanding Other Minds: Perspectives From Developmental Cognitive Neuroscience, pp. 3–20. Oxford University Press, New York (2000)Google Scholar
  3. Baron-Cohen, S., Leslie, A.M., Frith, U.: Does the autistic child have a ‘theory of mind’? Cognition 21, 37–46 (1985)CrossRefGoogle Scholar
  4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(1), 993–1022 (2003)zbMATHGoogle Scholar
  5. Bouchard, C., Solis, I., Seaman, B., Pesko, J.C., Ciesielski, K.R.: Developmental and familial characteristics of top-down inhibitory control networks and performance strategies: ERPs to the blue man stop-response task. Program No. 90.12. 2016 Neuroscience Meeting Planner. Society for Neuroscience, San Diego (2016)Google Scholar
  6. Cappadocia, M.C., Weiss, J.A., Pepler, D.: Bullying experiences among children and youth with autism spectrum disorders. J. Autism Dev. Disord. 42(2), 266–277 (2012). doi: 10.1007/s10803-011-1241-x CrossRefGoogle Scholar
  7. Carter, S.: Bullying of students with Asperger syndrome. Issues Compr. Pediatr. Nurs. 32, 145–154 (2009). doi: 10.1080/01460860903062782 CrossRefGoogle Scholar
  8. Centers for Disease Control: Autism Spectrum Disorder (ASD) (2014).
  9. Ciesielski, K.T.R.: Blue Man N-Back Test: Visual-Spatial Working Memory Paradigm (MGH/MIT AA Martinos Center for Biomedical Imaging, Radiology, Massachusetts General Hospital). (RN 0008929/2003, 2007) (2007)Google Scholar
  10. Ciesielski, K.T.R., Newton E.V., Solis, I.: Social Blue Man Test. Manual. Pediatric Neuroscience Laboratory, PCNC, Psychology, University of New Mexico, Albuquerque, NM 87131 (2015)Google Scholar
  11. Dalton, K.M., Nacewicz, B.M., Alexander, A.L., Davidson, R.J.: Gaze fixation, brain activation, and amygdala volume in unaffected siblings of individuals with autism. Soc. Biol. Psychiatry 61, 512–520 (2007)CrossRefGoogle Scholar
  12. Durkin, M., Maenner, M., Newschaffer, C., Lee, L., Cunniff, C., Daniels, J.L., Schieve, L.A.: Advanced parental age and the risk of autism spectrum disorder. Am. J. Epidemiol. 168(11), 1268–1276 (2008)CrossRefGoogle Scholar
  13. Hubert, B., Wicker, B., Moore, D.G., Monfardini, E., Duverger, H., Da Fonséca, D., Deruelle, C.: Brief report: recognition of emotional and non-emotional biological motion in individuals with autistic spectrum disorders. J. Autism Dev. Disord. 37(7), 1386–1392 (2007). doi: 10.1007/s10803-006-0275-y CrossRefGoogle Scholar
  14. Kabot, S., Masi, W., Segal, M.: Advances in the diagnosis and treatment of autism spectrum disorders. Prof. Psychol. Res. Pract. 34, 26–33 (2003)CrossRefGoogle Scholar
  15. Kaiser, M.N., Hudac, C.M., Schultz, S., Lee, S.M., Cheung, C., Berken, A.M., Pelphry, K.A.: Neural signatures of autism. Proc. Nat. Acad. Sci. USA 107(49), 21223–21228 (2010)CrossRefGoogle Scholar
  16. Kennedy, D.P., Courchesne, E.: The intrinsic functional organization of the brain is altered in autism. Neuroimage 39(4), 1877–1885 (2008)CrossRefGoogle Scholar
  17. Koldewyn, K., Whitney, D., Rivera, S.M.: Neural correlates of coherent and biological motion perception in autism. Dev. Sci. 14(5), 1075–1088 (2001). doi: 10.1111/j.1467-7687.2011.01058.x CrossRefGoogle Scholar
  18. Lainé, F., Rauzy, S., Tardif, C., Gepner, B.: Slowing down the presentation of facial and body movements enhances imitation performance in children with severe autism. J. Autism Dev. Disord. 41(8), 983–996 (2011). doi: 10.1007/s10803-010-1123-7 CrossRefGoogle Scholar
  19. Little, L.: Middle-class mothers’ perceptions of peer and sibling victimization among children with Asperger’s syndrome and nonverbal learning disorders. Issues Compr. Pediatr. Nurs. 25, 43–57 (2002)CrossRefGoogle Scholar
  20. Manzi, B., Loizzo, A., Giana, G., Curatolo, P.: Autism and metabolic diseases. J. Child Neurol. 23(3), 307–314 (2008)CrossRefGoogle Scholar
  21. Minshew, N.J., Keller, T.A.: The nature of brain dysfunction in autism: functional brain imaging studies. Cur. Opin. Neurol. 23(2), 124–130 (2010)CrossRefGoogle Scholar
  22. Molcho, M., Craig, W., Due, P., Pickett, W., Harel-Fisch, Y., Overpeck, M.: Cross-national time trends in bullying behaviour 1994–2006: findings from Europe and North America. Int. J. Public Health 54, 225–234 (2009)CrossRefGoogle Scholar
  23. Moore, D.G., Hobson, R.P., Lee, A.: Components of person perception: an investigation with autistic, nonautistic retarded and typically developing children and adolescents. Br. J. Dev. Psychol. 15, 401–423 (1997)CrossRefGoogle Scholar
  24. Nelson, K.B., Greather, J.K., Croen, L.A., Dambrosia, J.M., Dickens, B.F., Jeliffe, L.L.: Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation. Ann. Neurol. 49, 597–606 (2001)CrossRefGoogle Scholar
  25. Newton, V., Solis, I., Avina, G.E., McClain, J.T., King, C., Bouchard, C., Ciesielski, K.R.: Cognition of biological body movement as a risk factor for social bullying in unaffected siblings of children with autism spectrum disorders. Presentation at Neuroscience 2016, San Diego, California (2016)Google Scholar
  26. Nowell, K.P., Brewton, C.M., Goin-Kochel, R.P.: A multi-rater study on being teased among children/adolescents with autism spectrum disorder (ASD) and their typically developing siblings: associations with ASD symptoms. Focus Autism Other Dev. Disabil. 29(4), 195–205 (2014)CrossRefGoogle Scholar
  27. Olweus, D.: Bullying at School: What We Know and What We Can Do. Blackwell, Oxford (1993)Google Scholar
  28. Ozonoff, S., Young, G.S., Carter, A., Messinger, D., Yirmiya, N., Zwaigenbaum, L., Stone, W.L.: Recurrence risk for autism spectrum disorders: a baby siblings research consortium study. Pediatrics 128, e488–e495 (2011)Google Scholar
  29. Sterzing, P.R., Shattuck, P.T., Narendorf, S.C., Wagner, M., Cooper, B.P.: Bullying involvement in autism spectrum disorders: prevalence and correlates of bullying involvement among adolescents with an autism spectrum disorder. Arch. Pediatr. Adolesc. Med. 166(11), 1058–1064 (2012). doi: 10.1001/archpediatrics.2012.790 CrossRefGoogle Scholar
  30. Sumi, S., Taniai, H., Miyachi, T., Tanemura, M.: Sibling risk of pervasive developmental disorder estimated by means of an epidemiologic survey in Nagoya, Japan. J. Hum. Genet. 51, 518–522 (2006)CrossRefGoogle Scholar
  31. Swettenham, J., Remington, A., Laing, K., Fletcher, R., Coleman, M., Gomez, J.C.: Perception of pointing from biological motion point-light displays in typically developing children and children with autism spectrum disorder. J. Autism Dev. Disord. 43(6), 1437–1446 (2013). doi: 10.1007/s10803-012-1699-1 CrossRefGoogle Scholar
  32. Varcin, K.J., Nelson, C.A.: A developmental neuroscience approach to the search for biomarkers in autism spectrum disorder. Curr. Opin. Neurol. Apr. 29, 123–129 (2016). doi: 10.1097/WCO.0000000000000298 CrossRefGoogle Scholar
  33. Van Roekel, E., Scholte, H.J., Didden, R.: Bullying among adolescents with autism spectrum disorders: prevalence and perception. J. Autism Dev. Disord. 40, 63–73 (2010). doi: 10.1007/s10803-009-0832-2 CrossRefGoogle Scholar
  34. Zablotsky, B., Bradshaw, C.P., Anderson, C.M., Law, P.: Risk factors for bullying among children with autism spectrum disorders. Autism 18(4), 419–427 (2014). doi: 10.1177/1362361313477920 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Victoria Newton
    • 1
    • 2
    Email author
  • Isabel Solis
    • 1
  • Glory Emmanuel Aviña
    • 3
  • Jonathan T. McClain
    • 2
  • Cynthia King
    • 4
  • Kristina T. Rewin Ciesielski
    • 1
    • 5
  1. 1.Pediatric Neuroscience LaboratoryThe University of New MexicoAlbuquerqueUSA
  2. 2.Sandia National LaboratoriesAlbuquerqueUSA
  3. 3.Sandia National LaboratoriesLivermoreUSA
  4. 4.Department of Psychiatry, School of MedicineUNMAlbuquerqueUSA
  5. 5.MGH/HMS Athinoula A. Martinos Center for Biomedical Imaging, Radiology, Massachusetts General HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations