Skip to main content

Biomaterials: Degradation and Effects on Living Tissue

  • Chapter
  • First Online:
  • 1486 Accesses

Part of the book series: Topics in Mining, Metallurgy and Materials Engineering ((TMMME))

Abstract

Besides the already explained biocompatibility concept of Chap. 2 the cytotoxicity of the biomaterial should be an additional concept to be explored so as to elucidate the body of knowledge involving interface interactions between tissues/biomaterial for the in vivo condition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Katti, D.S., Lakashmi, S., Langer, R., Laurencin, C.T.: Toxicity, biodegradation and elimination of polyanhydrides. Adv. Drug Deliv. Rev. 54, 933–961 (2002)

    Article  Google Scholar 

  2. Marques, A.P., Reis, R.L., Hunt, J.A.: The biocompatibility of novel starch-based polymers and composites: in vitro studies. Biomaterials 23(6), 1471–1478 (2002)

    Article  Google Scholar 

  3. International Organization For Standardization. ISO 10993-5—Biological Evaluation of Medical Devices—Part 5: Tests for in Vitro Cytotoxicity. Geneva (2009)

    Google Scholar 

  4. Ratner, B.D.: Introduction: the body fights back—degradation of materials in the biological environment. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E. (eds.) Biomaterials Science—An Introduction to Materials in Medicine, 3rd edn. Academic Press, Amsterdam (2013)

    Google Scholar 

  5. Góes, A.M.de., Lopes, M.T.P., Maia, R.M.de.M.T., Salas, C.E.M.: Testes in Vitro com Biomateriais e Citotecnia. In: Orefice, R.L, Pereira, M.M, Mansur, H.S. (eds.) Biomateriais, Fundamentos e Aplicações. Cultura Medica, Rio de Janeiro (2006)

    Google Scholar 

  6. Kokubo, T., Hata, K., Nakamura, T., Yamamura, Y.: Apatite formation on ceramics, metals, and polymers induced by a CaO–SiO2-based glass in simulated body fluid. In: Bonfield, W., Hastings, G.W., Tanner, K.E. (eds.) Bioceramics: Proceedings of the 4th International Symposium on Ceramics in Medicine. Butterworth-Heinemainn, London (1991)

    Google Scholar 

  7. Orefice, R.L., Pereira, M.M., Mansur, H.S.: Biomateriais, Fundamentos e Aplicações. Cultura Medica, Rio de Janeiro (2006)

    Google Scholar 

  8. Resende, C.M.F.de.: Testes in vivo de biomateriais e histotecnia. In: Orefice, R.L, Pereira, M.M, Mansur, H.S. (eds.) Biomateriais, Fundamentos e Aplicações. Cultura Medica, Rio de Janeiro (2006)

    Google Scholar 

  9. Williams, D., Cahn, R.W., Bever, M.B.: Concise Encyclopedia of Medical & Dental Materials. Pergamon Press, Oxford (1990)

    Google Scholar 

  10. Morais, J.M., Papadimitrakopoulos, F., Burgess, D.J.: Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS Journal. 12(2), 188–196 (2010)

    Article  Google Scholar 

  11. Campos, D.L.P.de., Proto, R.S., Santos, D.C.dos., Ruiz, R.de.O., Brancaccio, N., Gonella, H.A.: Histopathological evaluation of polymethylmethacrylate in rats for one year. Rev. Bras. Cir. Plást. 26(2), 189–193 (2011)

    Google Scholar 

  12. Duranti, F., Salti, G., Bovani, B., Calandra, M., Rosati, M.L.: Injectable hyaluronic acid gel for soft tissue augmentation. A clinical and histological study. Dermatol. Surg. 24(12), 1317–1325 (1998)

    Article  Google Scholar 

  13. Holzapfel, B.M., Reichert, J.C., Schantz, J.T., Gbureck, U., Rackwitz, L., Noth, U., Jakob, F., Rudert, M., Groll, J., Hutmacher, D.W.: How smart do biomaterials need to be? A translational science and clinical point of view. Adv. Drug Deliv. Rev. 65(4), 581–603 (2013)

    Article  Google Scholar 

  14. Williams, D.F., Williams, R.L.: Degradative effects of the biological environment on metals and ceramics. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E. Biomaterials Science—An Introduction to Materials in Medicine, 3rd edn. Academic Press, Amsterdam (2013)

    Google Scholar 

  15. Sumita, M., Hanawa. T.: Failure processes in biometallic materials. Bioengineering. 9, 131–167 (2003)

    Google Scholar 

  16. Lou, K.J.: Adorable implants. Analysis: targets and mechanisms—Musculoskeletal disease. Sci. Bus. Exch. 5(25) (2012). doi:10.1038/scibx.2012.647

  17. Jacobs, J.J., Skipor, A.K., Patterson, L.M., Hallab, N.J., Paprosky, W.G., Black, J., Galante, J.O.: Metal release in patients who have had a primary total hip arthroplasty. A prospective, controlled, longitudinal study. J. Bone Joint Surg. Am. 80(10), 1447–1458 (1998)

    Article  Google Scholar 

  18. Jacobs, J.J., Silverton, C., Hallab, N.J., Skipor, A.K., Patterson, L., Black, J., Galante, J.O.: Metal release and excretion from cementless titanium alloy total knee replacements. Clin. Orthop. Relat. Res. 358, 173–180 (1999)

    Article  Google Scholar 

  19. Brayda-Bruno M., Fini, M., PIerini, G., Giavaresi, G., Rocca, M., Giardino, R.: Evaluation of systemic metal diffusion after spinal pedicular fixation with titanium alloy and stainless steel system: a 36-month experimental study in sheep. Int. J. Artif. Organs. 24(1), 41–49 (2001)

    Google Scholar 

  20. Walczak, J., Shahgaldi, F., Heatley, F.: In vivo corrosion of 316L stainless-steel hip implants: morphology and elemental compositions of corrosion products. Biomaterials 19, 229–237 (1998)

    Article  Google Scholar 

  21. Brooks, E.K., Brooks, R.P., Ehrensberger, M.T.: Effects of simulated inflammation on the corrosion of 316L stainless steel. Mat. Sci. Eng. C. 71, 200–205 (2017)

    Article  Google Scholar 

  22. Pereira, M.de.M., Vasconcelos, W.L., Zavaglia, C.A.de.C.: Materiais cerâmicos: ciência e aplicação como biomateriais. In: Orefice, R.L, Pereira, M.M, Mansur, H.S. (eds.) Biomateriais, Fundamentos e Aplicações. Cultura Medica, Rio de Janeiro (2006)

    Google Scholar 

  23. Nam, K.W., Yoo, J.J., Lae Kim, Y., Kim, Y.M., Lee, M.H., Kim, H.J.: Alumina-debris-induced osteolysis in contemporary alumina-on-alumina total hip arthroplasty. A case report. J. Bone Joint Surg. Am. American volume. 89(11), 2499–2503 (2007)

    Google Scholar 

  24. Barbanti, S.H., Zavaglia, C.A.C., Duek, E.A.R.: Polímeros bioreabsorvíveis na engenharia de tecidos. Polímeros. 15(1), 13–21 (2005)

    Article  Google Scholar 

  25. Lyu, S., Untereker, D.: Degradability of polymer for implantable biomedical devices. Int. J. Mol. Sci. 10(9), 4033–4065 (2009)

    Article  Google Scholar 

  26. Adamus, A., Wach, R.A., Olejnik, A.K., Dzierzawska, J., Rosiak, J.M.: Degradation of nerve guidance channels based on a poly(l-lactic acid) poly(trimethylene carbonate) biomaterial. Polym. Degrad. Stab. 97(4), 532–540 (2012)

    Article  Google Scholar 

  27. Proikakis, C.S., Mamouzelos, N.J., Tarantili, P.A., Andreopoulos, A.G.: Swelling and hydrolytic degradation of poly(D,L-lactic acid) in aqueous solutions. Polym. Degrad. Stab. 91(3), 614–619 (2006)

    Article  Google Scholar 

  28. Belgacem, M.N., Gandini, A.: Monomers, Polymers and Composites from Renewable Resources. Elsevier, Amsterdam (2008)

    Google Scholar 

  29. Auras, R.A., Harte, B., Selke, S., Hernandez, R.: Mechanical, physical, and barrier properties of poly(lactide) films. J. Plast. Film Sheeting 19, 123–135 (2003)

    Article  Google Scholar 

  30. Jong, S.J., Arias, E.R., Rijkers, D.T.S., Van Nostrum, C.F., Kettenes-Van Der Bosch, J.J., Hennink, W.E.: New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus. Polymer. 42(7), 2795–2802 (2001)

    Google Scholar 

  31. Deblieck, R.A.C., Van Beek, D.J.M., Remerie, K., Ward, I.M.: Failure mechanisms in polyolefines: the role of crazing, shear yielding and the entanglement network. Polymer 52, 2979–2990 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venina dos Santos .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

dos Santos, V., Brandalise, R.N., Savaris, M. (2017). Biomaterials: Degradation and Effects on Living Tissue. In: Engineering of Biomaterials. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-58607-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58607-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58606-9

  • Online ISBN: 978-3-319-58607-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics