Skip to main content

Introduction

  • Chapter
  • First Online:
Industrial Neuroscience in Aviation

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 18))

  • 660 Accesses

Abstract

In operational environments, safety of people relies on the work and efficiency of one or more operators: in such contexts, a human error could have serious and dramatic consequences. For example, in the transports’ domain, the passengers’ safety depends on the performance of the Pilot(s), on the Air Traffic Controller(s), or on the Driver(s). In general, Human Factors (HFs) have consistently been identified as one of the main factors—in a high proportion—of all workplaces accidents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbass HA, Tang J, Amin R, Ellejmi M, Kirby S (2014) Augmented cognition using real-time EEG-based adaptive strategies for air traffic control. Proc Hum Factors Ergon Soc Annu Meet 58:230–234. doi:10.1177/1541931214581048

    Article  Google Scholar 

  • Aberg L, Rimmö PA (1998) Dimensions of aberrant driver behaviour. Ergonomics 41:39–56. doi:10.1080/001401398187314

    Article  Google Scholar 

  • Aloise F, Aricò P, Schettini F, Salinari S, Mattia D, Cincotti F (2013) Asynchronous gaze-independent event-related potential-based brain–computer interface. Artif Intell Med 59:61–69. doi:10.1016/j.artmed.2013.07.006. Special Issue: Brain-computer interfacing

    Article  Google Scholar 

  • Aricò P, Borghini G, Di Flumeri G, Babiloni F (2015) Metodo per stimare uno stato mentale, in particolare un carico di lavoro, e relativo apparato (A Method for the estimation of mental state, in particular of the mental workload and its device). P1108IT00

    Google Scholar 

  • Arico P, Borghini G, Graziani I, Taya F, Sun Y, Bezerianos A, Thakor NV, Cincotti F, Babiloni F (2014) Towards a multimodal bioelectrical framework for the online mental workload evaluation. Presented at the 2014 36th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3001–3004. doi:10.1109/EMBC.2014.6944254

  • Bekhet AK, Zauszniewski JA (2012) Methodological triangulation: an approach to understanding data. Nurse Res. 20:40–43. doi:10.7748/nr2012.11.20.2.40.c9442

    Article  Google Scholar 

  • Berka C, Levendowski DJ, Lumicao MN, Yau A, Davis G, Zivkovic VT, Olmstead RE, Tremoulet PD, Craven PL (2007) EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat Space Environ Med 78:B231–B244

    Google Scholar 

  • Blankertz B, Tangermann M, Vidaurre C, Fazli S, Sannelli C, Haufe S, Maeder C, Ramsey L, Sturm I, Curio G, Müller K-R (2010) The Berlin Brain–Computer Interface: non-medical uses of BCI technology. Front Neurosci 4. doi:10.3389/fnins.2010.00198

  • Borghini G, Vecchiato G, Toppi J, Astolfi L, Maglione A, Isabella R, Caltagirone C, Kong W, Wei D, Zhou Z, Polidori L, Vitiello S, Babiloni F (2012) Assessment of mental fatigue during car driving by using high resolution EEG activity and neurophysiologic indices. Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2012, pp 6442–6445. doi:10.1109/EMBC.2012.6347469

  • Brouwer A-M, Zander TO, van Erp JBF, Korteling JE, Bronkhorst AW (2015) Using neurophysiological signals that reflect cognitive or affective state: six recommendations to avoid common pitfalls. Front Neurosci 9:136. doi:10.3389/fnins.2015.00136

    Article  Google Scholar 

  • Byrne EA, Parasuraman R (1996) Psychophysiology and adaptive automation. Biol Psychol 42:249–268. doi:10.1016/0301-0511(95)05161-9. Psychophysiology of Workload

    Article  Google Scholar 

  • Calabrese EJ (2008) Neuroscience and hormesis: overview and general findings. Crit Rev Toxicol 38:249–252. doi:10.1080/10408440801981957

    Article  Google Scholar 

  • Craven PL, Belov N, Tremoulet P, Thomas M, Berka C, Levendowski D, Davis G (2006) Cognitive workload gauge develpment: comparison of real-time classification methods. Augment Cogn. Past Present Future

    Google Scholar 

  • Decades NRC (US) Military communities, IM for EN, CR in the NT (2008) Emerging areas of cognitive Neuroscience and Neurotechnologies

    Google Scholar 

  • Di Flumeri G, Borghini G, Aricò P, Colosimo A, Pozzi S, Bonelli S, Golfetti A, Kong W, Babiloni F (2015) On the use of cognitive neurometric indexes in aeronautic and air traffic management environments. In: Blankertz B, Jacucci G, Gamberini L, Spagnolli A, Freeman J (eds) Symbiotic interaction. Springer International Publishing, Cham, pp 45–56

    Chapter  Google Scholar 

  • Feyer A, Williamson AM (2011) Human factors in accident modelling. Encycl Occup, Health Saf

    Google Scholar 

  • Fuchs S, Hale KS, Stanney KM, Juhnke J, Schmorrow DD (2007) Enhancing mitigation in augmented cognition. J Cogn Eng Decis Mak 1:309–326. doi:10.1518/155534307X255645

    Article  Google Scholar 

  • Giraudet L, Imbert J-P, Bérenger M, Tremblay S, Causse M (2015) The neuroergonomic evaluation of human machine interface design in air traffic control using behavioral and EGG/ERP measures. Behav Brain Res 294:246–253. doi:10.1016/j.bbr.2015.07.041

    Article  Google Scholar 

  • Helmreich RL (2000) On error management: lessons from aviation. BMJ 320:781–785

    Article  Google Scholar 

  • Hilburn B, Jorna PG, Byrne EA, Parasuraman R (1997) The effect of adaptive air traffic control (ATC) decision aiding on con-troller mental workload. In: Mouloua M, Koonce J (eds) Human-automation interaction: research and practice. Erlbaum, Mahwah, NJ, pp 84–91

    Google Scholar 

  • Hoc JM (2000) From human-machine interaction to human-machine cooperation. Ergonomics 43:833–843. doi:10.1080/001401300409044

    Article  Google Scholar 

  • Inagaki T (2003) Adaptive automation: sharing and trading of control. Handbook cognitive task design. Erlbaum, Mahwah. pp 147–169

    Google Scholar 

  • Kaber DB, Riley JM, Tan K-W, Endsley MR (2001) On the design of adaptive automation for complex systems. Int J Cogn Ergon 5:37–57. doi:10.1207/S15327566IJCE0501_3

    Article  Google Scholar 

  • Kirsh D (2000) A few thoughts on cognitive overload. Intellectica 30

    Google Scholar 

  • Kirwan B (1998) Human error identification techniques for risk assessment of high risk systems–Part 1: Review and evaluation of techniques. Appl Ergon 29:157–177

    Article  Google Scholar 

  • Kohlmorgen J, Dornhege G, Braun M, Blankertz B, Müller K-R, Curio G, Hagemann K, Bruns A, Schrauf M, Kincses W (2007) Improving human performance in a real operating environment through real-time mental workload detection [WWW Document]

    Google Scholar 

  • Krusienski DJ, Sellers EW, Cabestaing F, Bayoudh S, McFarland DJ, Vaughan TM, Wolpaw JR (2006) A comparison of classification techniques for the P300 speller. J Neural Eng 3:299–305. doi:10.1088/1741-2560/3/4/007

    Article  Google Scholar 

  • Lawton R, Ward NJ (2005) A systems analysis of the Ladbroke Grove rail crash. Accid Anal Prev 37:235–244. doi:10.1016/j.aap.2004.08.001

    Article  Google Scholar 

  • Maglione A, Borghini G, Aricò P, Borgia F, Graziani I, Colosimo A, Kong W, Vecchiato G, Babiloni F (2014). Evaluation of the workload and drowsiness during car driving by using high resolution EEG activity and neurophysiologic indices. Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2014, pp 6238–6241. doi:10.1109/EMBC.2014.6945054

  • Marcel S, Millan JDR (2007) Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation. IEEE Trans Pattern Anal Mach Intell 29:743–752. doi:10.1109/TPAMI.2007.1012

    Article  Google Scholar 

  • Mühl C, Jeunet C, Lotte F (2014) EEG-based workload estimation across affective contexts. Neuroprosthetics 8:114. doi:10.3389/fnins.2014.00114

    Google Scholar 

  • Nelson WR, Haney LN, Ostrom LT, Richards RE (1998) Structured methods for identifying and correcting potential human errors in space operations. Acta Astronaut 43:211–222

    Article  Google Scholar 

  • Norman DA, Verganti R (2014) Incremental and radical innovation: Design research vs. technology and meaning change. Design issues 30(1):78–96

    Google Scholar 

  • O’Donnell RD, Eggemeier (1986) Workload assessment methodology. Handbook of perception and human performance. John Wiley and Sons, Inc

    Google Scholar 

  • Parsons MW, Harrington DL, Rao SM (2005) Distinct neural systems underlie learning visuomotor and spatial representations of motor skills. Hum Brain Mapp 24:229–247. doi:10.1002/hbm.20084

    Article  Google Scholar 

  • Parasuraman R (2003) Neuroergonomics: research and practice. Theor Issues Ergon Sci 4:5–20. doi:10.1080/14639220210199753

    Article  Google Scholar 

  • Parasuraman R, Rizzo M (2008) Neuroergonomics: the brain at work, 1, edition edn. Oxford University Press, New York

    Google Scholar 

  • Parasuraman R, Bahri T, Deaton JE, Morrison JG, Barnes M (1992) Theory and design of adaptive automation in aviation systems

    Google Scholar 

  • Parasuraman R, Mouloua M, Molloy R (1994) Monitoring automation failures in human-machine systems. In: Mouloua M, Parasuraman R (eds) Human performance in automated systems: current research and trends. LEA, Hillsdale, NJ, pp 45–49

    Google Scholar 

  • Parasuraman R, Mouloua M, Molloy R (1996) Effects of adaptive task allocation on monitoring of automated systems. Hum Factors 38:665–679

    Article  Google Scholar 

  • Rabbi AF, Ivanca K, Putnam AV, Musa A, Thaden CB, Fazel-Rezai R (2009) Human performance evaluation based on EEG signal analysis: a prospective review. Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2009, pp 1879–1882. doi:10.1109/IEMBS.2009.5333877

  • Rankin W, Hibit R, Allen J, Sargent R (2000) Development and evaluation of the Maintenance Error Decision Aid (MEDA) process. Int J Ind Ergon 26:261–276. doi:10.1016/S0169-8141(99)00070-0

    Article  Google Scholar 

  • Rasmussen J (1987) The definition of human error and a taxonomy for technical system design. New technology and human error, pp 23–30

    Google Scholar 

  • Rasmussen J (1982) Human errors. A taxonomy for describing human malfunction in industrial installations. J Occup Accid 4:311–333. doi:10.1016/0376-6349(82)90041-4

    Article  Google Scholar 

  • Reason J (2008) The human contribution: Unsafe acts, accidents and heroic recoveries, New edition. CRC Press, Farnham, England ; Burlington, VT

    Google Scholar 

  • Reason J (2016) Managing the risks of organizational accidents. Routledge

    Google Scholar 

  • Rouse WB (1976) Adaptive allocation of decision making responsibility between supervisor and computer. In: Sheridan TB, Johannsen G (eds) Monitoring behavior and supervisory control, NATO conference series. Springer, US, pp 295–306. doi:10.1007/978-1-4684-2523-9_24

  • Rumar K (1990) The basic driver error: late detection. Ergonomics 33:1281–1290. doi:10.1080/00140139008925332

    Article  Google Scholar 

  • Salmon P, Regan M, Johnston I (2005) Human error and road transport: phase one—literature review. Monash University Accident Research Centre

    Google Scholar 

  • Scerbo MW, Freeman FG, Mikulka PJ (2003) A brain-based system for adaptive automation. Theor Issues Ergon Sci 4:200–219. doi:10.1080/1463922021000020891

    Article  Google Scholar 

  • Scerbo MW, Freeman FG, Mikulka PJ, Parasuraman R, Nocero FD, III LJP (2001) The efficacy of psychophysiological measures for implementing adaptive technology

    Google Scholar 

  • Schmorrow DD (2002) DARPA’s augmented cognition program-tomorrow’s human computer interaction from vision to reality: building cognitively aware computational systems. In: Presented at the proceedings of the 2002 IEEE 7th conference on human factors and power plants, 2002, pp 7-1–7-4. doi:10.1109/HFPP.2002.1042859

  • Schubert R, Tangermann M (2008) “Parieto-occipital alpha power indexes distraction during simulated car driving,” abstracts of the 14th World congress of psychophysiology. Int J Psychophysiol 69. doi:10.1016/j.ijpsycho.2008.05.033

  • Sexton JB, Thomas EJ, Helmreich RL (2000) Error, stress, and teamwork in medicine and aviation: cross sectional surveys. BMJ 320:745–749

    Article  Google Scholar 

  • Shappel SA, Wiegmann DA (2000) The human factors analysis and classification system-HFACS (No. DOT/FAA/AM-00/7). Federal Aviation Administration, Washington, DC

    Google Scholar 

  • Sheridan TB (2002) Humans and automation: system design and research issues. John Wiley & Sons Inc, New York, NY, USA

    Google Scholar 

  • Sheridan TB (1992) Telerobotics, automation, and human supervisory control. MIT Press, Cambridge

    Google Scholar 

  • Sheridan TB, Verplank WL (1978) Human and computer control of undersea teleoperators

    Google Scholar 

  • Shorrock ST, Kirwan B (2002) Development and application of a human error identification tool for air traffic control. Appl Ergon 33:319–336

    Article  Google Scholar 

  • Stanton NA, Harris D, Salmon PM, Demagalski JM, Marshall A, Young MS, Dekker SWA, Waldmann T (2006) Predicting design induced pilot error using HET (human error template)—A new formal human error identification method for flight decks [WWW Document]. https://dspace.lib.cranfield.ac.uk/handle/1826/1158. Accessed 25 Nov 2015

  • Vecchiato G, Borghini G, Aricò P, Graziani I, Maglione AG, Cherubino P, Babiloni F (2016) Investigation of the effect of EEG-BCI on the simultaneous execution of flight simulation and attentional tasks. Med Biol Eng Comput 54:1503–1513. doi:10.1007/s11517-015-1420-6

    Article  Google Scholar 

  • Venthur B, Blankertz B, Gugler MF, Curio G (2010) Novel applications of BCI technology: psychophysiological optimization of working conditions in industry. In: Presented at the 2010 IEEE International Conference on Systems Man and Cybernetics (SMC), IEEE, pp 417–421. doi:10.1109/ICSMC.2010.5641772

  • Warm JS, Parasuraman R, Matthews G (2008) Vigilance requires hard mental work and is stressful. Hum Factors 50:433–441

    Article  Google Scholar 

  • Welke S, Jurgensohn T, Roetting M (2009) Single-trial detection of cognitive processes for increasing traffic safety. In: Proceedings of the 21st (Esv) international technical conference on the enhanced safety of vehicles. Held June 2009, Stuttgart, Germany

    Google Scholar 

  • Wickens CD (1992) Engineering psychology and human performance, 2nd edn. HarperCollins Publishers, New York, NY, US

    Google Scholar 

  • Wickens CD, Hollands JG, Banbury S, Parasuraman R (2012) Engineering psychology and human performance, 4th edn. Psychology Press, Boston

    Google Scholar 

  • Wierwille WW, Eggemeier FT (1993) Recommendations for mental workload measurement in a test and evaluation environment. Hum Factors J Hum Factors Ergon Soc 35:263–281. doi:10.1177/001872089303500205

    Google Scholar 

  • Wolpaw J, Wolpaw EW (2012) Brain-Computer Interfaces: principles and practice. Oxford University Press, Oxford

    Google Scholar 

  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-Computer Interfaces for communication and control. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 113:767–791

    Article  Google Scholar 

  • Zander TO, Jatzev S (2012) Context-aware brain-computer interfaces: exploring the information space of user, technical system and environment. J Neural Eng 9:016003. doi:10.1088/1741-2560/9/1/016003

    Article  Google Scholar 

  • Zander TO, Kothe C, Welke S, Roetting M (2009) Utilizing secondary input from passive Brain-Computer Interfaces for enhancing human-machine interaction. In: Schmorrow DD, Estabrooke IV, Grootjen M (eds) Foundations of augmented cognition. Neuroergonomics and operational neuroscience. Springer, Berlin, Heidelberg, pp 759–771

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Borghini .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Borghini, G., Aricò, P., Di Flumeri, G., Babiloni, F. (2017). Introduction. In: Industrial Neuroscience in Aviation. Biosystems & Biorobotics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-58598-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58598-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58597-0

  • Online ISBN: 978-3-319-58598-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics