Skip to main content

Post-translational Modifications of Centromeric Chromatin

  • Chapter
  • First Online:

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 56))

Abstract

Regulation of chromatin structures is important for the control of DNA processes such as gene expression, and misregulation of chromatin is implicated in diverse diseases. Covalent post-translational modifications of histones are a prominent way to regulate chromatin structure and different chromatin regions bear their specific signature of histone modifications. The composition of centromeric chromatin is significantly different from other chromatin structures and mainly defined by the presence of the histone H3-variant CENP-A. Here we summarize the composition of centromeric chromatin and what we know about its differential regulation by post-translational modifications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

aa:

Amino acid

C. elegans :

Caenorhabditis elegans

CAL1:

Chromosome alignment defect 1

CID:

Centromere identifier (Drosophila)

Dam:

Deoxyadenosine methylase

D. melanogaster :

Drosophila melanogaster

Dnmt:

DNA methyltransferase

HACs:

Human artificial chromosomes

HAT B:

Histone acetyltransferase B

HDACs:

Histone Deacetylases

HFD:

Histone fold domain

HJURP:

Holliday junction-recognition protein

H3:

Histone 3

LSD1:

Lysine-specific demethylase 1

PTM:

Post-translational modifications

PcG:

Polycomb group

Plk:

Polo-like kinase

RCC1:

Regulator of chromatin condensation 1

Rdx:

Roadkill

S. cerevisiae :

Saccharomyces cerevisiae

S. pombe :

Schizosaccharomyces pombe

TrxG:

Trithorax group

Z. may :

Zea mays

References

  • Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17:487–500

    Article  CAS  PubMed  Google Scholar 

  • Allshire RC, Karpen GH (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nature reviews. Genetics 9:923–937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Annunziato AT (2005) Split decision: what happens to nucleosomes during DNA replication? J Biol Chem 280:12065–12068

    Article  CAS  PubMed  Google Scholar 

  • Apostolou E, Hochedlinger K (2013) Chromatin dynamics during cellular reprogramming. Nature 502:462–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archambault V, Glover DM (2009) Polo-like kinases: conservation and divergence in their functions and regulation. Nat Rev Mol Cell Biol 10:265–275

    Article  CAS  PubMed  Google Scholar 

  • Arents G, Burlingame RW, Wang BC, Love WE, Moudrianakis EN (1991) The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci USA 88:10148–10152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avvakumov N, Nourani A, Cote J (2011) Histone chaperones: modulators of chromatin marks. Mol Cell 41:502–514

    Article  CAS  PubMed  Google Scholar 

  • Bade D, Pauleau AL, Wendler A, Erhardt S (2014) The E3 ligase CUL3/RDX controls centromere maintenance by ubiquitylating and stabilizing CENP-A in a CAL1-dependent manner. Dev Cell 28:508–519

    Article  CAS  PubMed  Google Scholar 

  • Bailey AO, Panchenko T, Sathyan KM, Petkowski JJ, Pai P-J, Bai DL, Russell DH, Macara IG, Shabanowitz J, Hunt DF et al (2013) Posttranslational modification of CENP-A influences the conformation of centromeric chromatin. PNAS 110:11827–11832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey AO, Panchenko T, Shabanowitz J, Lehman SM, Bai DL, Hunt DF, Black BE, Foltz DR (2015) Identification of the posttranslational modifications present in centromeric chromatin. Mol Cell Proteomics 15:918–931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayliss R, Fry A, Haq T, Yeoh S (2012) On the molecular mechanisms of mitotic kinase activation. Open Biol 2:120–136

    Article  Google Scholar 

  • Bergmann JH, guez MGOMRI, Martins NMC, Kimura H, Kelly DA, Masumoto H, Larionov V, Jansen LET, Earnshaw WC (2011) Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 30:328–340

    Article  CAS  PubMed  Google Scholar 

  • Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    Article  CAS  PubMed  Google Scholar 

  • Black BE, Foltz DR, Chakravarthy S, Luger K, Woods VL, Cleveland DW (2004) Structural determinants for generating centromeric chromatin. Nature 430:578–582

    Article  CAS  PubMed  Google Scholar 

  • Blower MD (2016) Centromeric transcription regulates Aurora-B localization and activation. Cell Rep 15(8):1624–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blower MD, Karpen GH (2001) The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat Cell Biol 3:730–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2:319–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boltengagen M, Huang A, Boltengagen A, Trixl L, Lindner H, Kremser L, Offterdinger M, Lusser A (2015) A novel role for the histone acetyltransferase Hat1 in the CENP-A/CID assembly pathway in Drosophila melanogaster. Nucl Acids Res 1–15

    Google Scholar 

  • Bui M, Dimitriadis EK, Hoischen C, An E, Quénet D, Giebe S, Nita-Lazar A, Diekmann S, Dalal Y (2012) Cell-cycle-dependent structural transitions in the human CENP-A nucleosome in vivo. Cell 150:317–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmena M, Ruchaud S, Earnshaw WC (2009) Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins. Curr Opin Cell Biol 21:796–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Loranger SS, Mizzen C, Ernst SG, Allis CD, Annunziato AT (1997) Histones in transit: cytosolic histone complexes and diacetylation of H4 during nucleosome assembly in human cells. Biochemistry 36:469–480

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Muratore TL, Schaner-Tooley CE, Shabanowitz J, Hunt DF, Macara IG (2007) N-terminal alpha-methylation of RCC1 is necessary for stable chromatin association and normal mitosis. Nat Cell Biol 9:596–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow CM, Georgiou A, Szutorisz H, Maia e Silva A, Pombo A, Barahona I, Dargelos E, Canzonetta C, Dillon N (2005) Variant histone H3.3 marks promoters of transcriptionally active genes during mammalian cell division. EMBO Rep 6:354–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choy JS, Acuna R, Au WC, Basrai MA (2011) A role for histone H4K16 hypoacetylation in Saccharomyces cerevisiae kinetochore function. Genetics 189:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen I, Poreba E, Kamieniarz K, Schneider R (2011) Histone modifiers in cancer: friends or foes? Genes Cancer 2:631–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai J, Higgins JM (2005) Haspin: a mitotic histone kinase required for metaphase chromosome alignment. Cell Cycle 4:665–668

    Article  CAS  PubMed  Google Scholar 

  • Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J Mol Biol 319:1097–1113

    Article  CAS  PubMed  Google Scholar 

  • Dunleavy EM, Zhang W, Karpen GH (2013) Solo or doppio: how many CENP-As make a centromeric nucleosome? Nat Struct Mol Biol 20:648–650

    Article  CAS  PubMed  Google Scholar 

  • Elowe S, Hummer S, Uldschmid A, Li X, Nigg EA (2007) Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev 21:2205–2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fachinetti D, Logsdon GA, Abdullah A, Selzer EB, Cleveland DW, Black BE (2017) CENP-A modifications on Ser68 and Lys124 are dispensable for establishment, maintenance, and long-term function of human centromeres. Dev Cell 40:104–113

    Article  CAS  PubMed  Google Scholar 

  • Falk SJ, Guo LY, Sekulic N, Smoak EM, Mani T, Logsdon GA, Gupta K, Jansen LET, Van Duyne GD, Vinogradov SA et al (2015) CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. Science 348:699–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discovery 13:673–691

    Article  CAS  PubMed  Google Scholar 

  • Ferri F, Bouzinba-Segard H, Velasco G, Hube F, Francastel C (2009) Non-coding murine centromeric transcripts associate with and potentiate Aurora B kinase. Nucleic Acids Res 37:5071–5080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filion GJ, Bemmel JGV, Braunschweig U, Talhout W, Kind J, Ward LD, Castro JD, Kerkhoven RM, Bussemaker HJ, Steensel BV et al (2010) Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143:212–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J, Hunt DF, Funabiki H, Allis CD (2005) Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438:1116–1122

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  CAS  PubMed  Google Scholar 

  • Goutte-Gattat D, Shuaib M, Ouararhni K, Gautier T, Skoufias DA, Hamiche A, Dimitrov S (2013) Phosphorylation of the CENP-A amino-terminus in mitotic centromeric chromatin is required for kinetochore function. Proc Natl Acad Sci USA 110:8579–8584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grewal SIS, Elgin SCR (2007) Transcription and RNA interference in the formation of heterochromatin. Nature 447:399–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hake SB, Garcia Ba, Kauer M, Baker SP, Shabanowitz J, Hunt DF, Allis CD (2005) Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes. Proc Natl Acad Sci USA 102:6344–6349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatakeyama A, Hartmann B, Travers A, Nogues C, Buckle M (2016) High-resolution biophysical analysis of the dynamics of nucleosome formation. Sci Rep 6:1–14

    Article  CAS  Google Scholar 

  • Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157:95–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewawasam G, Shivaraju M, Mattingly M, Venkatesh S, Martin-Brown S, Florens L, Workman JL, Gerton JL (2010) Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4. Mol Cell 40:444–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinchcliffe EH, Day CA, Karanjeet KB, Fadness S, Langfald A, Vaughan KT, Dong Z (2016) Chromosome missegregation during anaphase triggers p 53 cell cycle arrest through histone H3.3 Ser31 phosphorylation. Nat Cell Biol 18:668–675

    Article  CAS  PubMed  Google Scholar 

  • Hole K, van Damme P, Dalva M, Aksnes H, Glomnes N, Varhaug JE, Lillehaug JR, Gevaert K, Arnesen T (2011) The human N-Alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4. PLoS One 6:1–11

    Article  CAS  Google Scholar 

  • Hori T, Shang WH, Toyoda A, Misu S, Monma N, Ikeo K, Molina O, Vargiu G, Fujiyama A, Kimura H et al (2014) Histone H4 Lys 20 monomethylation of the CENP-A nucleosome is essential for kinetochore assembly. Dev Cell 29:740–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu J-Y, Sun Z-W, Li X, Reuben M, Tatchell K, Bishop DK, Grushcow JM, Brame CJ, Caldwell JA, Hunt DF et al (2000) Mitotic phosphorylation of histone H3 is governed by Ipl1/Aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102:279–291

    Article  CAS  PubMed  Google Scholar 

  • Ishii K, Ogiyama Y, Chikashige Y, Soejima S, Masuda F, Kakuma T, Hiraoka Y, Takahashi K (2008) Heterochromatin integrity affects chromosome reorganization after centromere dysfunction. Science 321:1088–1091

    Article  CAS  PubMed  Google Scholar 

  • Jambhekar A, Emerman AB, Schweidenback CT, Blower MD (2014) RNA stimulates Aurora B kinase activity during mitosis. PLoS One 9:e100748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1081

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Liang G (2009) Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 10:805–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpen GH, Allshire RC (1997) The case for epigenetic effects on centromere identity and function. Trends Genet: TIG 13:489–496

    Article  CAS  PubMed  Google Scholar 

  • Kelly AE, Ghenoiu C, Xue JZ, Zierhut C, Kimura H, Funabiki H (2010) Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 330:235–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kops GJPL, Weaver BAA, Cleveland DW (2005) On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5:773–785

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Kunitoku N, Sasayama T, Marumoto T, Zhang D, Honda S, Kobayashi O, Hatakeyama K, Ushio Y, Saya H, Hirota T (2003) CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function. Dev Cell 5:853–864

    Article  CAS  PubMed  Google Scholar 

  • Lam AL, Boivin CD, Bonney CF, Rudd MK, Sullivan BA (2006) Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc Natl Acad Sci USA 103:4186–4191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassallette AE, Mocquard E, Arnaud M-C, Thiriet C, Matera AG (2011) H4 replication-dependent diacetylation and Hat1 promote S-phase chromatin assembly in vivo. Mol Biol Cell 2011(22):245–255

    Article  CAS  Google Scholar 

  • Lima de Faria A (1949) Genetics, origin and evolution of kinetochores. Hereditas 35:422–444

    Article  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  • McKinley KL, Cheeseman IM (2016) The molecular basis for centromere identity and function. Nat Rev Mol Cell Biol 17:16–29

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Moreno O, Medina-Gir S, Torras-Llort M, Azorn NF (2011) The F box protein partner of paired regulates stability of drosophila centromeric histone H3, CenH3 CID. Curr Biol 21:1488–1493

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Moreno O, Torras-Llort MN, Azor NF (2006) Proteolysis restricts localization of CID, the centromere-specific histone H3 variant of Drosophila, to centromeres. Nucl Acids Res 34:6247–6255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morey L, Barnes K, Chen Y, Fitzgerald-Hayes M, Baker RE (2004) The histone fold domain of Cse4 is sufficient for CEN targeting and propagation of active centromeres in budding yeast. Eukaryot Cell 3:1533–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz-Barrera M, Monje-Casas F (2014) Increased Aurora B activity causes continuous disruption of kinetochore-microtubule attachments and spindle instability. Proc Natl Acad Sci USA 111:E3996–E4005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G, Auvil L, Beever JE, Chowdhary BP, Galibert F, Gatzke L et al (2005) Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309:613–617

    Article  CAS  PubMed  Google Scholar 

  • Niikura Y, Kitagawa R, Kitagawa K (2016) CENP-A ubiquitylation is inherited through dimerization between cell divisions. Cell Rep 15:61–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niikura Y, Kitagawa R, Ogi H, Abdulle R, Pagala V, Kitagawa K (2015) CENP-A K124 ubiquitylation is required for CENP-A deposition at the centromere. ‎Dev Cell 32(5):589–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama T, Sykora MM, Mechtler K, Peters J-M (2013) Aurora B and Cdk1 mediate WapI activation and release of acetylated cohesin from chromosomes by phosphorylating Sororin. Proc Natl Acad Sci 110:13404–13409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noma KI, Allis CD, Grewal SIS (2001) Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293:1150–1155

    Article  CAS  PubMed  Google Scholar 

  • Ohzeki J-I, Bergmann JH, Kouprina N, Noskov VN, Nakano M, Kimura H, Earnshaw WC, Larionov V, Masumoto H (2012) Breaking the HAC barrier: histone H3K9 acetyl/methyl balance regulates CENP-A assembly. EMBO J 31:2391–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olszak AM, van Essen D, Pereira AJ, Diehl S, Manke T, Maiato H, Saccani S, Heun P (2011) Heterochromatin boundaries are hotspots for de novo kinetochore formation. Nat Cell Biol 13:799–808

    Article  CAS  PubMed  Google Scholar 

  • Partridge JF, Borgstrøm B, Allshire RC (2000) Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev 14:783–791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peters AHFM, Kubicek S, Mechtler K, O’Sullivan RJ, Derijck AAHA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y et al (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12:1577–1589

    Article  CAS  PubMed  Google Scholar 

  • Petruk S, Sedkov Y, Johnston DM, Hodgson JW, Black KL, Kovermann SK, Beck S, Canaani E, Brock HW, Mazo A (2012) TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell 150:922–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Przewloka MR, Glover DM (2009) The kinetochore and the centromere: a working long distance relationship. Annu Rev Genet 43:439–465

    Article  CAS  PubMed  Google Scholar 

  • Ranjitkar P, Press MO, Yi X, Baker R, MacCoss MJ, Biggins S (2010) An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain. Mol Cell 40:455–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y, Allis CD (2003) Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 12:1591–1598

    Article  CAS  PubMed  Google Scholar 

  • Rosic S, Kohler F, Erhardt S (2014) Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J Cell Biol 207:335–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuno T, Tada K, Watanabe Y (2009) Kinetochore geometry defined by cohesion within the centromere. Nature 458:852–858

    Article  CAS  PubMed  Google Scholar 

  • Samel A, Cuomo A, Bonaldi T, Ehrenhofer-Murray AE (2012) Methylation of CenH3 arginine 37 regulates kinetochore integrity and chromosome segregation. Proc Natl Acad Sci 109:9029–9034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T (2004) A silencing pathway to induce H3-K9 and H4-K29 trimethylation at constitutive heterochromatin. Genes Dev 18:1251–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott KC, Merrett SL, Willard HF (2006) A heterochromatin barrier partitions the fission yeast centromere into discrete chromatin domains. Curr Biol 16:119–129

    Article  CAS  PubMed  Google Scholar 

  • Sekulic N, Bassett EA, Rogers DJ, Black BE (2010) The structure of (CENP-A-H4)(2) reveals physical features that mark centromeres. Nature 467:347–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang WH, Hori T, Westhorpe FG, Godek KM, Toyoda A, Misu S, Monma N, Ikeo K, Carroll CW, Takami Y et al (2016) Acetylation of histone H4 lysine 5 and 12 is required for CENP-A deposition into centromeres. Nat Commun 7:13465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman JM, Pillus L (1997) An uncertain silence. Trends Genet 13:308–313

    Article  CAS  PubMed  Google Scholar 

  • Shin H-J, Baek K-H, Jeon A-H, Kim S-J, Jang K-L, Sung Y-C, Kim C-M, Lee C-W (2003) Inhibition of histone deacetylase activity increases chromosomal instability by the aberrant regulation of mitotic checkpoint activation. Oncogene 22:3853–3858

    Article  CAS  PubMed  Google Scholar 

  • Smith MM (2002) Centromeres and variant histones: what, where, when and why? Curr Opin Cell Biol 14:279–285

    Article  CAS  PubMed  Google Scholar 

  • Stein WD (1980) The epigenetic address: a model for embryological development. J Theor Biol 82:663–677

    Article  CAS  PubMed  Google Scholar 

  • Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11:1076–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan KF, Hechenberger M, Masri K (1994) Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol 127:581–592

    Article  CAS  PubMed  Google Scholar 

  • Tachiwana H, Kagawa W, Shiga T, Osakabe A, Miya Y, Saito K, Hayashi-Takanaka Y, Oda T, Sato M, Park S-Y et al (2011) Crystal structure of the human centromeric nucleosome containing CENP-A. Nature 476:232–235

    Article  CAS  PubMed  Google Scholar 

  • Turner BM (2007) Defining an epigenetic code. Nat Cell Biol 9:2–6

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Dai J, Daum JR, Niedzialkowska E, Banerjee B, Stukenberg PT, Gorbsky GJ, Higgins JM (2010) Histone H3 Thr-3 phosphorylation by haspin positions Aurora B at centromeres in mitosis. Science 330:231–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirbelauer C, Bell O, Schubeler D (2005) Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter-proximal bias. Genes Dev 19:1761–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagishi Y, Honda T, Tanno Y, Watanabe Y (2010) Two histone marks establish the inner centromere and chromosome bi-orientation. Science 330:239–243

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi Y, Sakuno T, Shimura M, Watanabe Y (2008) Heterochromatin links to centromeric protection by recruiting shugoshin. Nature 455:251–255

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Zhou X, Wang W, Deng W, Fang J, Hu H, Wang Z, Li S, Cui L, Shen J et al (2015) Dynamic phosphorylation of CENP-A at Ser68 orchestrates its cell-cycle-dependent deposition at centromeres. Dev Cell 32:68–81

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Li X, Marshall JB, Zhong CX, Dawe RK (2005) Phosphoserines on maize centromeric histone H3 and histone H3 demarcate the centromere and pericentromere during chromosome segregation. Plant Cell 17:572–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Bui M, Dalal Y, Papoian GA (2016) Promiscuous histone mis-assembly is actively prevented by chaperones. J Am Chem Soc 138:13207

    Article  CAS  PubMed  Google Scholar 

  • Zinkowski RP, Meyne J, Brinkley BR (1991) The centromere-kinetochore complex: a repeat subunit model. J Cell Biol 113:1091–1110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to those authors whose work we did not cite because of space limitations. We thank Anne-Laure Pauleau, Engin Demirdizen, and Aubry K. Miller for comments on the manuscript and the entire Erhardt lab for fruitful discussions. Work in the Erhardt laboratory is funded by the Deutsche Forschungsgemeinschaft (EXC81, SFB1036, and ER576/2-2) and the European Research Council (ERC-CoG-682496). AGA is a member of the Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Erhardt .

Editor information

Editors and Affiliations

Glossary

Histone code

It describes the hypothesis that the genetic information encoded in the DNA with a four-letter code is controlled by diverse post-translational modifications of histones which act in combination to provide binding sites for specific regulatory proteins depending on the combinatorial use of histone modifications.

PTM

Post-translational modifications are covalent modifications of proteins catalyzed by enzymes, which occur after proteins translation is completed.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

García del Arco, A., Erhardt, S. (2017). Post-translational Modifications of Centromeric Chromatin. In: Black, B. (eds) Centromeres and Kinetochores. Progress in Molecular and Subcellular Biology, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-58592-5_9

Download citation

Publish with us

Policies and ethics