Skip to main content

Use of Mass Spectrometry to Study the Centromere and Kinetochore

  • Chapter
  • First Online:

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 56))

Abstract

A number of paths have led to the present list of centromere proteins, which is essentially complete for constitutive structural proteins, but still may be only partial if we consider the many other proteins that briefly visit the centromere and kinetochore to fine-tune the chromatin and adjust other functions. Elegant genetics led to the description of the budding yeast point centromere in 1980. In the same year was published the serendipitous discovery of antibodies that stained centromeres of human mitotic chromosomes in antisera from CREST patients. Painstaking biochemical analyses led to the identification of the human centromere antigens several years later, with the first yeast proteins being described 6 years after that. Since those early days, the discovery and cloning of centromere and kinetochore proteins has largely been driven by improvements in technology. These began with expression cloning methods, which allowed antibodies to lead to cDNA clones. Next, functional screens for kinetochore proteins were made possible by the isolation of yeast centromeric DNAs. Ultimately, the completion of genome sequences for humans and model organisms permitted the coupling of biochemical fractionation with protein identification by mass spectrometry. Subsequent improvements in mass spectrometry have led to the current state where virtually all structural components of the kinetochore are known and where a high-resolution map of the entire structure will likely emerge within the next several years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abad MA, Medina B, Santamaria A, Zou J, Plasberg-Hill C, Madhumalar A, Jayachandran U, Redli PM, Rappsilber J, Nigg EA et al (2014) Structural basis for microtubule recognition by the human kinetochore Ska complex. Nat Commun 5:2964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adachi J, Kumar C, Zhang Y, Olsen JV, Mann M (2006) The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol 7:R80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adolph KW, Cheng SM, Paulson JR, Laemmli UK (1977) Isolation of a protein scaffold from mitotic HeLa cell chromosomes. Proc Natl Acad Sci (USA) 11:4937–4941

    Article  Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  • Akiyoshi B, Gull K (2014) Discovery of unconventional kinetochores in kinetoplastids. Cell 156:1247–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyoshi B, Nelson CR, Ranish JA, Biggins S (2009) Quantitative proteomic analysis of purified yeast kinetochores identifies a PP1 regulatory subunit. Genes Dev 23:2887–2899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyoshi B, Sarangapani KK, Powers AF, Nelson CR, Reichow SL, Arellano-Santoyo H, Gonen T, Ranish JA, Asbury CL, Biggins S (2010) Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468:576–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amano M, Suzuki A, Hori T, Backer C, Okawa K, Cheeseman IM, Fukagawa T (2009) The CENP-S complex is essential for the stable assembly of outer kinetochore structure. J Cell Biol 186:173–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barysz H, Kim JH, Chen ZA, Hudson DF, Rappsilber J, Gerloff DL, Earnshaw WC (2015) Three-dimensional topology of the SMC2/SMC4 subcomplex from chicken condensin I revealed by cross-linking and molecular modelling. Open Biol 5

    Google Scholar 

  • Basilico F, Maffini S, Weir JR, Prumbaum D, Rojas AM, Zimniak T, De Antoni A, Jeganathan S, Voss B, van Gerwen S et al (2014) The pseudo GTPase CENP-M drives human kinetochore assembly. Elife 3:e02978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biggins S (2013) The composition, functions, and regulation of the budding yeast kinetochore. Genetics 194:817–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bischoff FR, Maier G, Tilz G, Ponstingl H (1990) A 47-kDa human nuclear protein recognized by antikinetochore autoimmune sera is homologous with the protein encoded by RCC1, a gene implicated in onset of chromosome condensation. Proc Nat Acad Sci (USA) 87:8617–8621

    Article  CAS  Google Scholar 

  • Bischoff FR, Ponstingl H (1991a) Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354:80–82

    Article  CAS  PubMed  Google Scholar 

  • Bischoff FR, Ponstingl H (1991b) Mitotic regulator protein RCC1 is complexed with a nuclear ras-related polypeptide. Proc Natl Acad Sci (USA) 88:10830–10834

    Article  CAS  Google Scholar 

  • Brenner S, Pepper D, Berns MW, Tan E, Brinkley BR (1981) Kinetochore structure, duplication and distribution in mammalian cells: analysis by human autoantibodies from scleroderma patients. J Cell Biol 91:95–102

    Article  CAS  PubMed  Google Scholar 

  • Chan FL, Marshall OJ, Saffery R, Kim BW, Earle E, Choo KH, Wong LH (2012) Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc Natl Acad Sci (USA) 109:1979–1984

    Article  CAS  Google Scholar 

  • Cheeseman IM, Desai A (2008) Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 9:33–46

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman IM, Niessen S, Anderson S, Hyndman F, Yates JR, Oegema K, Desai A (2004) A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev 18:2255–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZA, Fischer L, Cox J, Rappsilber J (2016) Quantitative cross-linking/mass spectrometry using isotope-labeled cross-linkers and MaxQuant. Mol Cell Proteomics 15:2769–2778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chikashige Y, Kinoshita N, Nakaseko Y, Matsumoto T, Murikami S, Niwa O, Yanagida M (1989) Composite motifs and repeat symmetry in S. pombe centromeres: direct analysis by integration of Notl restriction sites. Cell 57:739–751

    Article  CAS  PubMed  Google Scholar 

  • Ciferri C, Pasqualato S, Screpanti E, Varetti G, Santaguida S, Dos Reis G, Maiolica A, Polka J, De Luca JG, De Wulf P et al (2008) Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133:427–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke L, Baum MP (1990) Functional analysis of a centromere from fission yeast: a role for centromere-specific repeated DNA sequences. Mol Cell Biol 10:1863–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke L, Carbon J (1980) Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287:504–509

    Article  CAS  PubMed  Google Scholar 

  • Cooke CA, Heck MM, Earnshaw WC (1987) The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis. J Cell Biol 105:2053–2067

    Article  CAS  PubMed  Google Scholar 

  • D’Archivio S, Wickstead B (2017) Trypanosome outer kinetochore proteins suggest conservation of chromosome segregation machinery across eukaryotes. J Cell Biol 216:379–391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Wulf P, McAinsh AD, Sorger PK (2003) Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev 17:2902–2921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desai A, Rybina S, Muller-Reichert T, Shevchenko A, Hyman A, Oegema K (2003) KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans. Genes Dev 17:2421–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doheny KF, Sorger PK, Hyman AA, Tugendreich S, Spencer F, Hieter P (1993) Identification of essential components of the S. cerevisiae kinetochore. Cell 73:761–774

    Article  CAS  PubMed  Google Scholar 

  • Earnshaw WC, Halligan N, Cooke C, Rothfield N (1984) The kinetochore is part of the chromosome scaffold. J Cell Biol 98:352–357

    Article  CAS  PubMed  Google Scholar 

  • Earnshaw WC, Laemmli UK (1983) Architecture of metaphase chromosomes and chromosome scaffolds. JCell Biol 96:84–93

    Article  CAS  Google Scholar 

  • Earnshaw WC, Migeon B (1985) A family of centromere proteins is absent from the latent centromere of a stable isodicentric chromosome. Chromosoma (Berl) 92:290–296

    Article  CAS  Google Scholar 

  • Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma (Berl) 91:313–321

    Article  CAS  Google Scholar 

  • Earnshaw WC, Sullivan KF, Machlin PS, Cooke CA, Kaiser DA, Pollard TD, Rothfield NF, Cleveland DW (1987) Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J Cell Biol 104:817–829

    Article  CAS  PubMed  Google Scholar 

  • Fischer L, Chen ZA, Rappsilber J (2013) Quantitative cross-linking/mass spectrometry using isotope-labelled cross-linkers. J Proteomics 88:120–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fishel B, Amstitz H, Baum M, Carbon J, Clarke L (1988) Structural organization and functional analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 8:754–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald-Hayes M, Clarke L, Carbon J (1982) Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29:235–244

    Article  CAS  PubMed  Google Scholar 

  • Foltz DR, Jansen LE, Black BE, Bailey AO, Yates JR, Cleveland DW (2006) The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol 8:458–469

    Article  CAS  PubMed  Google Scholar 

  • Friese A, Faesen AC, Huis in’t Veld PJ, Fischbock J, Prumbaum D, Petrovic A, Raunser S, Herzog F, Musacchio A (2016) Molecular requirements for the inter-subunit interaction and kinetochore recruitment of SKAP and Astrin. Nat Commun 7:11407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gascoigne KE, Takeuchi K, Suzuki A, Hori T, Fukagawa T, Cheeseman IM (2011) Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145:410–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassmann R, Carvalho A, Henzing AJ, Ruchaud S, Hudson DF, Honda R, Nigg EA, Gerloff DL, Earnshaw WC (2004) Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle. J Cell Biol 166:179–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassmann R, Henzing AJ, Earnshaw WC (2005) Novel components of human mitotic chromosomes identified by proteomic analysis of the chromosome scaffold fraction. Chromosoma 113:385–397

    Article  CAS  PubMed  Google Scholar 

  • Gonczy P, Echeverri C, Oegema K, Coulson A, Jones SJ, Copley RR, Duperon J, Oegema J, Brehm M, Cassin E et al (2000) Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408:331–336

    Article  CAS  PubMed  Google Scholar 

  • Goshima G, Saitoh S, Yanagida M (1999) Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation. Genes Dev 13:1664–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guldner HH, Lakomek H-J, Bautz FA (1984) Human anti-centromere sera recognise a 19.5 kD non-histone chromosomal protein from HeLa cells. Clin Exp Immunol 58:13–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hahnenberger KM, Baum MP, Polizzi CM, Carbon J, Clarke L (1989) Construction of functional artificial minichromosomes in the fission yeast Schizosaccharomyces pombe. Proc Nat Acad Sci (USA) 86:577–581

    Article  CAS  Google Scholar 

  • Han X, Aslanian A, Yates JR 3rd (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12:483–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi T, Fujita Y, Iwasaki O, Adachi Y, Takahashi K, Yanagida M (2004) Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118:715–729

    Article  CAS  PubMed  Google Scholar 

  • Hieter P, Pridmore D, Hegemann JH, Thomas M, Davis RW, Philippsen P (1985) Functional selection and analysis of yeast centromeric DNA. Cell 42:913–921

    Article  CAS  PubMed  Google Scholar 

  • Hori T, Amano M, Suzuki A, Backer CB, Welburn JP, Dong Y, McEwen BF, Shang WH, Suzuki E, Okawa K et al (2008) CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135:1039–1052

    Article  CAS  PubMed  Google Scholar 

  • Hornung P, Troc P, Malvezzi F, Maier M, Demianova Z, Zimniak T, Litos G, Lampert F, Schleiffer A, Brunner M et al (2014) A cooperative mechanism drives budding yeast kinetochore assembly downstream of CENP-A. J Cell Biol 206:509–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyland KM, Kingsbury J, Koshland D, Hieter P (1999) Ctf19p: a novel kinetochore protein in Saccharomyces cerevisiae and a potential link between the kinetochore and mitotic spindle. J Cell Biol 145:15–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izuta H, Ikeno M, Suzuki N, Tomonaga T, Nozaki N, Obuse C, Kisu Y, Goshima N, Nomura F, Nomura N et al (2006) Comprehensive analysis of the ICEN (interphase centromere complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 11:673–684

    Article  CAS  PubMed  Google Scholar 

  • Jensen ON, Podtelejnikov AV, Mann M (1997) Identification of the components of simple protein mixtures by high-accuracy peptide mass mapping and database searching. Anal Chem 69:4741–4750

    Article  CAS  PubMed  Google Scholar 

  • Jensen ON, Wilm M, Shevchenko A, Mann M (1999) Peptide sequencing of 2-DE gel-isolated proteins by nanoelectrospray tandem mass spectrometry. Methods Mol Biol 112:571–588

    CAS  PubMed  Google Scholar 

  • Kang YH, Park CH, Kim TS, Soung NK, Bang JK, Kim BY, Park JE, Lee KS (2011) Mammalian polo-like kinase 1-dependent regulation of the PBIP1-CENP-Q complex at kinetochores. J Biol Chem 286:19744–19757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpen GH, Allshire RC (1997) The case for epigenetic effects on centromere identity and function. Trends Genet 13:489–496

    Article  CAS  PubMed  Google Scholar 

  • Klare K, Weir JR, Basilico F, Zimniak T, Massimiliano L, Ludwigs N, Herzog F, Musacchio A (2015) CENP-C is a blueprint for constitutive centromere-associated network assembly within human kinetochores. J Cell Biol 210:11–22

    Article  CAS  PubMed  Google Scholar 

  • Kustatscher G, Grabowski P, Rappsilber J (2016) Multiclassifier combinatorial proteomics of organelle shadows at the example of mitochondria in chromatin data. Proteomics 16:393–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lechner J, Carbon J (1991) A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64:717–725

    Article  CAS  PubMed  Google Scholar 

  • Leitner A, Faini M, Stengel F, Aebersold R (2016) Crosslinking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines. Trends Biochem Sci 41:20–32

    Article  CAS  PubMed  Google Scholar 

  • Lewis CD, Laemmli UK (1982) Higher order metaphase chromosome structure: evidence for metalloprotein interactions. Cell 29:171–181

    Article  CAS  PubMed  Google Scholar 

  • Liao H, Winkfein RJ, Mack G, Rattner JB, Yen TJ (1995) CENP-F is a protein of the nuclear matrix that assembles onto kinetochores at late G2 and is rapidly degraded after mitosis. J Cell Biol 130:507–518

    Article  CAS  PubMed  Google Scholar 

  • Macek B, Waanders LF, Olsen JV, Mann M (2006) Top-down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer. Mol Cell Proteomics 5:949–958

    Article  CAS  PubMed  Google Scholar 

  • Maddox PS, Hyndman F, Monen J, Oegema K, Desai A (2007) Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J Cell Biol 176:757–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maine GT, Sinha P, Tye BK (1984) Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics 106:365–385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maiolica A, Cittaro D, Borsotti D, Sennels L, Ciferri C, Tarricone C, Musacchio A, Rappsilber J (2007) Structural analysis of multiprotein complexes by cross-linking, mass spectrometry, and database searching. Mol Cell Proteomics 6:2200–2211

    Article  CAS  PubMed  Google Scholar 

  • Meeks-Wagner D, Wood JS, Garvik B, Hartwell LH (1986) Isolation of two genes that affect mitotic chromosome transmission in S. cerevisiae. Cell 44:53–63

    Article  CAS  PubMed  Google Scholar 

  • Meluh PB, Koshland D (1995) Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol Biol Cell 6:793–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina O, Vargiu G, Abad MA, Zhiteneva A, Jeyaprakash AA, Masumoto H, Kouprina N, Larionov V, Earnshaw WC (2016) Epigenetic engineering reveals a balance between histone modifications and transcription in kinetochore maintenance. Nat Commun 7:13334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montaño-Gutierrez LF, Ohta S, Kustatscher G, Earnshaw WC, Rappsilber J (2017) Nano random forests to mine protein complexes and their relationships in quantitative proteomics data. Mol Biol Cell 28:673–680

    Google Scholar 

  • Moroi Y, Hartman AL, Nakane PK, Tan EM (1981) Distribution of kinetochore (centromere) antigen in mammalian cell nuclei. J Cell Biol 90:254–259

    Article  CAS  PubMed  Google Scholar 

  • Moroi Y, Peebles C, Fritzler MJ, Steigerwald J, Tan EM (1980) Autoantibody to centromere (kinetochore) in scleroderma sera. Proc Nat Acad Sci (USA) 77:1627–1631

    Article  CAS  Google Scholar 

  • Moyer SE, Lewis PW, Botchan MR (2006) Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A 103:10236–10241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakaseko Y, Adachi Y, Funahashi S, Niwa O, Yanagida M (1986) Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast. The EMBO J 5:1011–1021

    CAS  PubMed  Google Scholar 

  • Nerusheva OO, Akiyoshi B (2016) Divergent polo box domains underpin the unique kinetoplastid kinetochore. Open Biol 6

    Google Scholar 

  • Nishihashi A, Haraguchi T, Hiraoka Y, Ikemura T, Regnier V, Dodson H, Earnshaw WC, Fukagawa T (2002) CENP-I is essential for centromere function in vertebrate cells. Dev Cell 2:463–476

    Article  CAS  PubMed  Google Scholar 

  • Nishino T, Rago F, Hori T, Tomii K, Cheeseman IM, Fukagawa T (2013) CENP-T provides a structural platform for outer kinetochore assembly. EMBO J 32:424–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishino T, Takeuchi K, Gascoigne KE, Suzuki A, Hori T, Oyama T, Morikawa K, Cheeseman IM, Fukagawa T (2012) CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell 148:487–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obuse C, Yang H, Nozaki N, Goto S, Okazaki T, Yoda K (2004) Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase. Genes Cells 9:105–120

    Article  CAS  PubMed  Google Scholar 

  • Oegema K, Desai A, Rybina S, Kirkham M, Hyman AA (2001) Functional analysis of kinetochore assembly in Caenorhabditis elegans. J Cell Biol 153:1209–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta S, Bukowski-Wills JC, Sanchez-Pulido L, Alves Fde L, Wood L, Chen ZA, Platani M, Fischer L, Hudson DF, Ponting CP et al (2010a) The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell 142:810–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta S, Bukowski-Wills JC, Wood L, de Lima Alves F, Chen Z, Rappsilber J, Earnshaw WC (2010b) Proteomics of isolated mitotic chromosomes identifies the kinetochore protein Ska3/Rama1. Cold Spring Harb Symp Quant Biol 75:433–438

    Article  CAS  PubMed  Google Scholar 

  • Ohta S, Montano-Gutierrez LF, de Lima Alves F, Ogawa H, Toramoto I, Sato N, Morrison CG, Takeda S, Hudson DF, Rappsilber J et al (2016) Proteomics analysis with a nano random forest approach reveals novel functional interactions regulated by SMC complexes on mitotic chromosomes. Mol Cell Proteomics 15:2802–2818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta S, Wood L, Bukowski-Wills JC, Rappsilber J, Earnshaw WC (2010c) Building mitotic chromosomes. Curr Opin Cell Biol 23:114–121

    Article  PubMed  CAS  Google Scholar 

  • Okada M, Cheeseman IM, Hori T, Okawa K, McLeod IX, Yates JR, Desai A, Fukagawa T (2006) The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol 8:446–457

    Article  CAS  PubMed  Google Scholar 

  • Ong SE, Foster LJ, Mann M (2003) Mass spectrometric-based approaches in quantitative proteomics. Methods 29:124–130

    Article  CAS  PubMed  Google Scholar 

  • Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1:2650–2660

    Article  CAS  PubMed  Google Scholar 

  • Ortiz J, Stemmann O, Rank S, Lechner J (1999) A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev 13:1140–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer DK, Margolis RL (1985) Kinetochore components recognized by human autoantibodies are present on mononucleosomes. Mol Cell Biol 5:173–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer DK, O’Day K, Le Trong H, Charbonneau H, Margolis RL (1991) Purification of the centromeric protein CENP-A and demonstration that it is a centromere specific histone. Proc Nat Acad Sci (USA) 88:3734–3738

    Article  CAS  Google Scholar 

  • Pekgoz Altunkaya G, Malvezzi F, Demianova Z, Zimniak T, Litos G, Weissmann F, Mechtler K, Herzog F, Westermann S (2016) CCAN assembly configures composite binding interfaces to promote cross-linking of Ndc80 complexes at the Kinetochore. Curr Biol 26:2370–2378

    Article  CAS  PubMed  Google Scholar 

  • Pluta AF, Mackay AM, Ainsztein AM, Goldberg IG, Earnshaw WC (1995) The centromere: hub of chromosomal activities. Science 270:1591–1594

    Article  CAS  PubMed  Google Scholar 

  • Przewloka MR, Venkei Z, Bolanos-Garcia VM, Debski J, Dadlez M, Glover DM (2011) CENP-C is a structural platform for kinetochore assembly. Curr Biol 21:399–405

    Article  CAS  PubMed  Google Scholar 

  • Ranish JA, Yi EC, Leslie DM, Purvine SO, Goodlett DR, Eng J, Aebersold R (2003) The study of macromolecular complexes by quantitative proteomics. Nat Genet 33:349–355

    Article  CAS  PubMed  Google Scholar 

  • Rout MP, Kilmartin JV (1990) Components of the yeast spindle and spindle pole body. J Cell Biol 111:1913–1927

    Article  CAS  PubMed  Google Scholar 

  • Roy N, Poddar A, Lohia A, Sinha P (1997) The mcm17 mutation of yeast shows a size-dependent segregational defect of a mini-chromosome. Curr Genet 32:182–189

    Article  CAS  PubMed  Google Scholar 

  • Saitoh H, Tomkiel JE, Cooke CA, Ratrie HR, Maurer M, Rothfield NF, Earnshaw WC (1992) CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70:115–125

    Article  CAS  PubMed  Google Scholar 

  • Samejima I, Spanos C, Alves Fde L, Hori T, Perpelescu M, Zou J, Rappsilber J, Fukagawa T, Earnshaw WC (2015) Whole-proteome genetic analysis of dependencies in assembly of a vertebrate kinetochore. J Cell Biol 211:1141–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders WS, Chue C, Goebl M, Craig C, Clark RF, Powers JA, Eissenberg JC, Elgin SC, Rothfield NF, Earnshaw WC (1993) Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti-centromere autoantibodies with anti-chromo specificity. J Cell Sci 104:573–582

    PubMed  Google Scholar 

  • Schleiffer A, Maier M, Litos G, Lampert F, Hornung P, Mechtler K, Westermann S (2012) CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat Cell Biol 14:604–613

    Article  CAS  PubMed  Google Scholar 

  • Screpanti E, De Antoni A, Alushin GM, Petrovic A, Melis T, Nogales E, Musacchio A (2011) Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore. Curr Biol 21:391–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh TR, Saro D, Ali AM, Zheng XF, Du CH, Killen MW, Sachpatzidis A, Wahengbam K, Pierce AJ, Xiong Y et al (2010) MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM. Mol Cell 37:879–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, Alleaume AM, Artelt J, Bettencourt P, Cassin E et al (2005) Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434:462–469

    Article  CAS  PubMed  Google Scholar 

  • Spencer F, Gerring SL, Connelly C, Hieter P (1990) Mitotic chromosome transmission fidelity mutants in Saccharomyces cerevisiae. Genetics 124:237–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner N, Clarke L (1994) A novel epigenetic effect can alter centromere function in fission yeast. Cell 79:865–874

    Article  CAS  PubMed  Google Scholar 

  • Stoler S, Keith KC, Curnick KE, Fitzgerald-Hayes M (1995) A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev 9:573–586

    Article  CAS  PubMed  Google Scholar 

  • Sullivan KF, Hechenberger M, Masri K (1994) Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol 127:581–592

    Article  CAS  PubMed  Google Scholar 

  • Tadeu AM, Ribeiro S, Johnston J, Goldberg I, Gerloff D, Earnshaw WC (2008) CENP-V is required for centromere organization, chromosome alignment and cytokinesis. EMBO J 27:2510–2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamada H, Yanagida M (1994) Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality. Mol Biol Cell 5:1145–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takata H, Uchiyama S, Nakamura N, Nakashima S, Kobayashi S, Sone T, Kimura S, Lahmers S, Granzier H, Labeit S et al (2007) A comparative proteome analysis of human metaphase chromosomes isolated from two different cell lines reveals a set of conserved chromosome-associated proteins. Genes Cells 12:269–284

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi K, Nishino T, Mayanagi K, Horikoshi N, Osakabe A, Tachiwana H, Hori T, Kurumizaka H, Fukagawa T (2013) The centromeric nucleosome-like CENP-T-W-S-X complex induces positive supercoils into DNA. Nucleic Acids Res 42:1644–1655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama S, Kobayashi S, Takata H, Ishihara T, Hori N, Higashi T, Hayashihara K, Sone T, Higo D, Nirasawa T et al (2005) Proteome analysis of human metaphase chromosomes. J Biol Chem 280:16994–17004

    Article  CAS  PubMed  Google Scholar 

  • Vafa O, Sullivan KF (1997) Chromatin containing CENP-A and a-satellite DNA is a major component of the inner kinetochore plate. Curr Biol 7:897–900

    Article  CAS  PubMed  Google Scholar 

  • Warburton PE, Cooke C, Bourassa S, Vafa O, Sullivan BA, Stetten G, Gimelli G, Warburton D, Tyler-Smith C, Sullivan KF et al (1997) Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol 7:901–904

    Article  CAS  PubMed  Google Scholar 

  • Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  CAS  PubMed  Google Scholar 

  • Weir JR, Faesen AC, Klare K, Petrovic A, Basilico F, Fischbock J, Pentakota S, Keller J, Pesenti ME, Pan D et al (2016) Insights from biochemical reconstitution into the architecture of human kinetochores. Nature 537:249–253

    Article  CAS  PubMed  Google Scholar 

  • Westermann S, Drubin DG, Barnes G (2007) Structures and functions of yeast kinetochore complexes. Annu Rev Biochem 76:563–591

    Article  CAS  PubMed  Google Scholar 

  • Wigge PA, Jensen ON, Holmes S, Soues S, Mann M, Kilmartin JV (1998) Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. J Cell Biol 141:967–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wigge PA, Kilmartin JV (2001) The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J Cell Biol 152:349–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagishi Y, Sakuno T, Goto Y, Watanabe Y (2014) Kinetochore composition and its function: lessons from yeasts. FEMS Microbiol Rev 38:185–200

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Delannoy M, Ling C, Daee D, Osman F, Muniandy PA, Shen X, Oostra AB, Du H, Steltenpool J et al (2010) A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. Mol Cell 37:865–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yates JR 3rd (1998) Mass spectrometry and the age of the proteome. J Mass Spectrom 33:1–19

    Article  CAS  PubMed  Google Scholar 

  • Yen TJ, Compton DA, Wise D, Zinkowski RP, Brinkley BR, Earnshaw WC, Cleveland DW (1991) CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J 10:1245–1254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young RA, Davis RB (1983) Yeast polymerase II genes: isolation with antibody probes. Science 222:778–782

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Shinya Ohta and Juri Rappsilber for allowing us to reproduce their unpublished data. Work in the Earnshaw lab is funded by the Wellcome Trust, of which W.C.E. is a Principal Research Fellow (grant number 073915). The Wellcome Trust Centre for Cell Biology is supported by core grant numbers 077707 and 092076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Earnshaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Samejima, I., Platani, M., Earnshaw, W.C. (2017). Use of Mass Spectrometry to Study the Centromere and Kinetochore. In: Black, B. (eds) Centromeres and Kinetochores. Progress in Molecular and Subcellular Biology, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-58592-5_1

Download citation

Publish with us

Policies and ethics