Skip to main content

Engineering

  • Chapter
  • First Online:
Multi-Objective Optimization Problems

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

Abstract

In this chapter, the Self-adaptive Multi-objective Optimization Differential Evolution algorithm is applied to a series of engineering problems (beam with section I; welded beam; machinability of stainless steel; optimization of hydro cyclone performance; alkylation process optimization; batch stirred biochemical tank reactor; catalyst mixing; crystallization process; rotary dryer and rotor-dynamics design). The results obtained by the proposed methodology were compared with those obtained from other evolutionary strategies. In general, the proposed methodology was able to obtain the same quality of solution in comparison with other evolutionary strategies. In addition, the number of objective function evaluations required by the proposed algorithm was less than those required by other evolutionary algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castro, R.E.: Optimization of structures with multi-objective using genetic algorithms. Thesis (in Portuguese), COPPE/UFRJ, Rio de Janeiro (2001)

    Google Scholar 

  2. Lobato, F.S., Steffen, V. Jr.: Engineering system design with multi-objective differential evolution. In: 19th International Congress of Mechanical Engineering, Brasília (2007)

    Google Scholar 

  3. Lobato, F.S.: Multi-objective optimization for engineering system design. Thesis (in Portuguese), Federal University of Uberlândia, Uberlândia (2008)

    Google Scholar 

  4. Ramos, C.A.D., Barbosa, C.A, Miranda, P.R.R., Machado, A.R.: Machinability of a martensitic stainless steel in end milling operation using surface response methodology. In: 17th International Congress of Mechanical Engineering, November 10–14, São Paulo (2003)

    Google Scholar 

  5. Lobato, F.S., Souza, M.N., Silva, M.A., Machado, A.R.: Multi-objective optimization and bio-inspired methods applied to machinability of stainless steel. Appl. Soft Comput. 22, 261–271 (2014)

    Article  Google Scholar 

  6. Silva, D.O., Vieira, L.G.M., Lobato, F.S., Barrozo, M.A.S.: Optimization of hydrocyclone performance using multi-objective firefly colony algorithm. Sep. Sci. Technol. 48, 1891–1899 (2013)

    Article  Google Scholar 

  7. Rangaiah, G.P.: Multi-objective Optimization, Techniques and Applications in Chemical Engineering. Advances in Process Systems Engineering, 1st edn. World Scientific, Singapore (2009)

    Google Scholar 

  8. Edgar, T.F., Himmelblau, D.M., Lasdon, L.S.: Optimization of Chemical Processes. McGraw-Hill, New York (2001)

    Google Scholar 

  9. Luus, R., Jaakola, T.H.I.: Optimization by direct search and systematic reduction of the size of search region. AIChE J. 19, 760–766 (1973)

    Article  Google Scholar 

  10. Seider, W.D., Seader, J.D., Lewin, D.R.: Product and Process Design Principles: Synthesis, Analysis, and Evaluation. Wiley, New York (2003)

    Google Scholar 

  11. Luus, R.: Optimization of Systems with Multiple Objective Functions, pp. 3–8. International Congress, European Federation of Chemical Engineering, Paris (1978)

    Google Scholar 

  12. Lobato, F.S., Steffen, V. Jr.: Multi-objective optimization firefly algorithm applied to (bio)chemical engineering system design. Am. J. Appl. Math. Stat. 1(6), 110–116 (2013)

    Article  Google Scholar 

  13. Ghose, T.K., Gosh, P.: Kinetic analysis of gluconic acid production by Pseudomonas ovalis. J. Chem. Technol. Biotechnol. 26, 768–777 (1976)

    Google Scholar 

  14. Johansen, T.A., Foss, B.A.: Semi-empirical modeling of non-linear dynamic systems through identification of operating regimes and locals models. In: Hunt, K., Irwin, G., Warwick, K. (eds.) Neural Network Engineering in Control Systems, pp. 105–126. Springer, Berlin (1995)

    Chapter  Google Scholar 

  15. Gun, D.J., Thomas, W.J.: Mass transport and chemical reaction in multifunctional catalyst systems. Chem. Eng. Sci. 20, 89–100 (1965)

    Article  Google Scholar 

  16. Logist, F., Houska, B., Diehl, M., van Impe, J.F.: A toolkit for efficiently generating Pareto sets in (bio)chemical multi-objective optimal control problems. In: European Symposium on Computer Aided Process Engineering – ESCAPE20 (2010)

    Google Scholar 

  17. Logsdon, J.S.: Efficient determination of optimal control profiles for differential algebraic systems. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA (1990)

    Google Scholar 

  18. Vassiliadis, V.: Computational solution of dynamic optimization problems with general differential-algebraic constraints. Ph.D. Thesis, University of London, London (1993)

    Google Scholar 

  19. Lobato, F.S.: Hybrid approach for dynamic optimization problems. M.Sc. Thesis (in Portuguese), FEQUI/UFU, Uberlândia (2004)

    Google Scholar 

  20. Lobato, F.S., Steffen, V. Jr.: Solution of optimal control problems using multi-particle collision algorithm. In: 9th Conference on Dynamics, Control and Their Applications, June 2010

    Google Scholar 

  21. Souza, D.L., Lobato, F.S., Gedraite, R.: Robust multiobjective optimization applied to optimal control problems using differential evolution. Chem. Eng. Technol. 1, 1–8 (2015)

    Google Scholar 

  22. McCabe, W.L., Smith, J.C., Harriott, P.: Unit Operation of Chemical Engineering, 5th edn. McGraw-Hill, New York (1993)

    Google Scholar 

  23. Myerson, A.S.: Handbook of Industrial Crystallization, 242 pp. Butterworth-Heinemann, Boston (1993)

    Google Scholar 

  24. Jones, A.G.: Crystallization Process Systems, 1st edn. Butterworth-Heinemann, Oxford (2002)

    Google Scholar 

  25. Rawlings, J.B., Miller, S.M., Witkowski, W.R.: Model identification and control of solution crystallization process. Ind. Eng. Chem. Res. 32, 1275–1296 (1993)

    Article  Google Scholar 

  26. Rawlings, J.B., Slink, C.W., Miller, S.M.: Control of crystallization processes. In: Myerson, A.S. (ed.) Handbook of Industrial Crystallization, 2nd edn., pp. 201–230. Elsevier, Amsterdam (2001)

    Google Scholar 

  27. Shi, D., El-Farra, N.H., Li, M., Mhaskar, P., Christofides, P.D.: Predictive control of particle size distribution in particulate processes. Chem. Eng. Sci. 61, 268–281 (2006)

    Article  Google Scholar 

  28. Paengjuntuek, W., Kittisupakorn, P., Arpornwichanop, A.: Optimization and nonlinear control of a batch crystallization process. J. Chin. Inst. Chem. Eng. 39, 249–256 (2008)

    Article  Google Scholar 

  29. Gamez-Garcia, V., Flores-Mejia, H.F., Ramirez-Muñoz, J., Puebla, H.: Dynamic optimization and robust control of batch crystallization. Proc. Eng. 42, 471–481 (2012)

    Article  Google Scholar 

  30. Mesbah, A.: Optimal Operation of Industrial Batch Crystallizers - A Nonlinear Model-based Control Approach. CPI Wohrmann Print Service, Zutphen (2010). ISBN 978-90-9025844-7

    Google Scholar 

  31. Arruda, E.B.: Drying of fertilizers in rotary dryers. PhD Thesis (in Portuguese). School of Chemical Engineering, Federal University of Uberlândia, Uberlândia (2008)

    Google Scholar 

  32. Lobato, F.S., Arruda, E.B., Barrozo, M.A.S., Steffen, V. Jr.: Estimation of drying parameters in rotary dryers using differential evolution. J. Phys. Conf. Ser. 135, 1–8 (2008)

    Article  Google Scholar 

  33. Page, G.E.: Factors influencing the maximum rates of air drying shelled corn in thin-layer. Dissertation, Purdue University, Indiana-USA (1949)

    Google Scholar 

  34. Osborn, G.S., White, G.M. Sulaiman, A.H., Welton, L.R.: Predicting equilibrium moisture proportions of soybeans. Trans. ASAE 32(6), 2109–2113 (1989)

    Article  Google Scholar 

  35. McCabe, W.L., Smith, J.C.: Operaciones Básicas de Ingeniería Química. Editorial Reverté S. A., Barcelona (1972)

    Google Scholar 

  36. Douglas, P.L., Kwade, A., Lee, P.L., Mallick, S.K.: Simulation of a rotary dryer for sugar crystalline. Dry. Technol. 11(1), 129–155 (1993)

    Article  Google Scholar 

  37. Lobato, F.S., Assis, E.G., Steffen, V. Jr., Silva Neto, A.J.: Design and identification problems of rotor bearing systems using the simulated annealing algorithm. In: de Sales Guerra Tsuzuki, M. (ed.) Simulated Annealing - Single and Multiple Objective Problems, 197-16, 284 pp. InTech, Rijeka (2012). ISBN 978-953-51-0767-5

    Google Scholar 

  38. Assis, E.G., Steffen, V. Jr.: Inverse problem techniques for the identification of rotor-bearing systems. Inverse Prob. Sci. Eng. 11(1), 39–53 (2003)

    Article  Google Scholar 

  39. Lalanne, M., Ferraris, G.: Rotordynamics Prediction in Engineering. Wiley, New York (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Lobato, F.S., Steffen, V. (2017). Engineering. In: Multi-Objective Optimization Problems. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-58565-9_6

Download citation

Publish with us

Policies and ethics