Skip to main content

Treatment of Multi-objective Optimization Problem

  • Chapter
  • First Online:
Multi-Objective Optimization Problems

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

Abstract

In this chapter, the treatment of multi-objective optimization problems considering Classical Aggregation Methods and both Deterministic and Non-Deterministic Methods is presented. In addition, a brief review about the treatment of constraints and heuristic approaches associated with dominance concept are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001). ISBN 0-471-87339-X

    MATH  Google Scholar 

  2. Lobato, F.S.: Multi-objective optimization for engineering system design. Thesis (in Portuguese). Federal University of Uberlândia, Uberlândia (2008)

    Google Scholar 

  3. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26(1), 369–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Osyczka, A.: An approach to multicriterion optimization problems for engineering design. Comput. Methods Appl. Mech. Eng. 15, 309–333 (1978)

    Article  MATH  Google Scholar 

  5. Osyczka, A.: Multicriterion Optimization in Engineering with Fortran Programs, 1st edn. Ellis Horwood Limited, Chichester (1984)

    Google Scholar 

  6. Coello, C.A.C.: A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowl. Inf. Syst. 1(3), 269–308 (1999)

    Article  Google Scholar 

  7. Caramia, M., Dell’Olmo, P.: Multi-Objective Management in Freight Logistics, 187 pp. Springer, London (2008). ISBN 978-1-84800-381-1

    Google Scholar 

  8. Kim, I.Y., de Weck, O.L.: Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation. Struct. Multidiscip. Optim. 31, 105–116 (2008). doi:10.1007/s00158-005-0557-6

    Article  MathSciNet  MATH  Google Scholar 

  9. Charnes, A., Cooper, W.W.: Management Models and Industrial Applications of Linear Programming. Wiley, New York (1961)

    MATH  Google Scholar 

  10. Walz, F.M.: An engineering approach: hierarchical optimization criteria. IEEE Trans. Autom. Control 12, 179–191 (1967)

    Article  Google Scholar 

  11. Vanderplaats, G.N.: Numerical Optimization Techniques for Engineering Design, 3rd edn., 441 pp. VR D INC., Colorado Springs, CO (1999)

    Google Scholar 

  12. Edgar, T.F., Himmelblau, D.M., Lasdon, L.S.: Optimization of Chemical Processes. McGraw-Hill, New York (2001)

    Google Scholar 

  13. Deb, K.: Current trends in evolutionary multi-objective optimization. Int. J. Simul. Multidiscip. Des. Optim. 1, 1–8 (2007). doi:10.1051/ijsmdo:2007001

    Article  Google Scholar 

  14. Guliashki, V., Toshev, H., Korsemov, C.: Survey of evolutionary algorithms used in multiobjective optimization. Probl. Eng. Cybern. Robot. 60, 42–54 (2009)

    MathSciNet  Google Scholar 

  15. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning, 1st edn. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  16. Michalewicz, Z., Janikow, C.Z.: Handling constraints in genetic algorithms. In: Proceedings of the 4th International Conference on Genetic Algorithms, pp. 151–157 (1991)

    Google Scholar 

  17. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  18. Lobato, F.S., Assis, E.G., Steffen, V. Jr., Silva Neto, A.J.: Design and identification problems of rotor bearing systems using the simulated annealing algorithm. In: Tsuzuki, M.S.G. (ed.) Simulated Annealing - Single and Multiple Objective Problems, pp. 197–216. InTech, Rijeka (2012). ISBN 978-953-51-0767-5

    Google Scholar 

  19. Storn, R., Price, K.: Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Int. Comput. Sci. Inst. 12, 1–16 (1995)

    Google Scholar 

  20. Babu, B.V., Angira, R.: Optimization of thermal cracker operation using differential evolution. In: Proceedings of International Symposium and 54th Annual Session of IIChE (CHEMCON-2001) (2001)

    Google Scholar 

  21. Babu, B.V., Chakole, P.G., Mubeen, J.H.S.: Multiobjective differential evolution (MODE) for optimization of adiabatic styrene reactor. Chem. Eng. Sci. 60, 4822–4837 (2005)

    Article  Google Scholar 

  22. Babu, B.V., Gaurav, C.: Evolutionary computation strategy for optimization of an alkylation reaction. In: Proceedings of International Symposium and 53rd Annual Session of IIChE (CHEMCON-2000) (2000)

    Google Scholar 

  23. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution, A Practical Approach to Global Optimization. Springer, Berlin/Heidelberg (2005)

    MATH  Google Scholar 

  24. Lobato, F.S., Sousa, J.A., Hori, C.E., Steffen, V. Jr.: Improved bees colony algorithm applied to chemical engineering system design. Int. Rev. Chem. Eng. (Rapid Commun.) 6, 1–7 (2010)

    Google Scholar 

  25. Lobato, F.S., Steffen, V. Jr.: Solution of optimal control problems using multi-particle collision algorithm. In: 9th Conference on Dynamics, Control and Their Applications, June 2010

    Google Scholar 

  26. Lobato, F.S., Souza, M.N., Silva, M.A., Machado, A.R.: Multi-objective optimization and bio-inspired methods applied to machinability of stainless steel. Appl. Soft Comput. 22, 261–271 (2014)

    Article  Google Scholar 

  27. Parrich, J., Viscido, S., Grunbaum, D.: Self-organized fish schools: an examination of emergent properties. Biol. Bull. 202(3), 296–305 (2002)

    Article  Google Scholar 

  28. Pham, D.T., Kog, E., Ghanbarzadeh, A., Otri, S., Rahim, S., Zaidi, M.: The bees algorithm - a novel tool for complex optimisation problems. In: Proceedings of 2nd International Virtual Conference on Intelligent Production Machines and Systems. Elsevier, Oxford (2006)

    Google Scholar 

  29. Li, X.L., Shao, Z.J., Qian, J.X.: An optimizing method based on autonomous animate: fish swarm algorithm. Syst. Eng. Theory Pract. 22(11), 32–38 (2002)

    Google Scholar 

  30. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Cambridge (2008)

    Google Scholar 

  31. van Kampen, A.H.C., Strom, C.S., Buydens, L.M.C.: Lethalization, penalty and repair functions for constrained handling in the genetic algorithm methodology. Chemom. Intell. Lab. Syst. 34(1), 55–68 (1996)

    Article  Google Scholar 

  32. Michalewicz, Z., Logan, T., Swaminathan, S.: Evolutionary operators for continuous convex parameter spaces. In: Proceedings of the 3rd Annual Conference on Evolutionary Programming, pp. 84–97 (1994)

    Google Scholar 

  33. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. J. 8(2), 125–148 (2000)

    Article  Google Scholar 

  34. Zitzler, E., Laumanns, M., Thiele, L.: SPEA II: improving the strength pareto evolutionary algorithm. In: Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Zurich (2001)

    Google Scholar 

  35. Schaffer, J.D.: Some experiments in machine learning using vector evaluated genetic algorithms. Ph.D Dissertation. Vanderbilt University, Nashville, USA

    Google Scholar 

  36. Gupta, I.K., Kumar, J.: VEGA and MOGA an approach to multi-objective optimization. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 5(4) (2015). ISSN:2277 128X

    Google Scholar 

  37. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Forrest, S. (ed.) Proceedings of the 5th International Conference on Genetic Algorithms, San Mateo, CA, University of Illinois at Urbana-Champaign, pp. 416–423. Morgan Kauffmann Publishers, San Francisco (1993)

    Google Scholar 

  38. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, vol. I, pp. 82–87. IEEE Service Center, Piscataway, NJ (1994)

    Google Scholar 

  39. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  40. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  41. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  42. Hu, X., Coello, C.A.C., Huang, Z.: A new multi-objective evolutionary algorithm: neighborhood exploring evolution strategy. Eng. Optim. 37, 351–379 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Lobato, F.S., Steffen, V. (2017). Treatment of Multi-objective Optimization Problem. In: Multi-Objective Optimization Problems. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-58565-9_3

Download citation

Publish with us

Policies and ethics