Skip to main content

Paired VH:VL Analysis of Naïve B Cell Repertoires and Comparison to Antigen-Experienced B Cell Repertoires in Healthy Human Donors

  • Chapter
  • First Online:
Decoding the Antibody Repertoire

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Obtaining an extensive sequence database for the naïve B cell repertoire is of high importance for immunology and medical research because the ensemble of sequences that comprise the naïve repertoire will ultimately dictate whether an organism has the ability to recognize a particular chemical species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brezinschek H-P, Foster SJ, Dörner T, Brezinschek RI, Lipsky PE (1998) Pairing of variable heavy and variable κ chains in individual naive and memory B cells. J Immunol 160:4762–4767

    CAS  PubMed  Google Scholar 

  2. Bräuninger A, Goossens T, Rajewsky K, Küppers R (2001) Regulation of immunoglobulin light chain gene rearrangements during early B cell development in the human. Eur J Immunol 31:3631–3637

    Article  PubMed  Google Scholar 

  3. Tian CX et al (2007) Evidence for preferential Ig gene usage and differential TdT and exonuclease activities in human naive and memory B cells. Mol Immunol 44:2173–2183

    Article  CAS  PubMed  Google Scholar 

  4. Wu YC et al (2010) High-throughput immunoglobulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations. Blood 116:1070–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Glanville J et al (2011) Naive antibody gene-segment frequencies are heritable and unaltered by chronic lymphocyte ablation. Proc Natl Acad Sci USA 108:20066–20071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mroczek ES et al (2014) Differences in the composition of the human antibody repertoire by B cell subsets in the blood. Front Immunol 5:96

    Article  PubMed  PubMed Central  Google Scholar 

  7. McGuire AT et al (2013) Engineering HIV envelope protein to activate germline B cell receptors of broadly neutralizing anti-CD4 binding site antibodies. J Exp Med 210:655–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jardine J et al (2013) Rational HIV immunogen design to target specific germline B cell receptors. Sci 340:711–716

    Article  CAS  Google Scholar 

  9. McLellan JS et al (2013) Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Sci 342:592–598

    Article  CAS  Google Scholar 

  10. Schoettler N, Ni D, Weigert M (2012) B cell receptor light chain repertoires show signs of selection with differences between groups of healthy individuals and SLE patients. Mol Immunol 51:273–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lindop R et al (2011) Molecular signature of a public clonotypic autoantibody in primary Sjögren’s syndrome: a ‘forbidden’ clone in systemic autoimmunity. Arthritis Rheum 63:3477–3486

    Article  CAS  PubMed  Google Scholar 

  12. Dorner T, et al (2011) Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat Rev Rheumatol 7:170

    Google Scholar 

  13. Di Niro R et al (2012) High abundance of plasma cells secreting transglutaminase 2-specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal lesions. Nat Med 18:U441–U204

    Article  Google Scholar 

  14. DeKosky BJ et al (2015) In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire. Nat Med 21:86–91

    Article  CAS  PubMed  Google Scholar 

  15. Smyth GK (2005). In: Gentleman R, Carey VJ, Huber W, Irizarry RA, Dudoit S (eds) Bioinformatics and computational biology solutions using r and bioconductor, Springer, New York, pp 397–420

    Google Scholar 

  16. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wardemann H et al (2003) Predominant autoantibody production by early human B cell precursors. Sci 301:1374–1377

    Article  CAS  Google Scholar 

  18. de Wildt RM, Hoet RM, van Venrooij WJ, Tomlinson IM, Winter G (1999) Analysis of heavy and light chain pairings indicates that receptor editing shapes the human antibody repertoire. J Mol Biol 285:895–901

    Article  PubMed  Google Scholar 

  19. Eisenberg D (1984) Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem 53:595–623

    Article  CAS  PubMed  Google Scholar 

  20. Jackson KJL, Kidd MJ, Wang Y, Collins AM (2013) The shape of the lymphocyte receptor repertoire: lessons from the B cell receptor. Front Immunol 4:1–12

    Article  CAS  Google Scholar 

  21. Georgiou G et al (2014) The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol 32:158–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Parameswaran P et al (2013) Convergent antibody signatures in human dengue. Cell Host Microbe 13:691–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jackson KJL et al (2014) Human responses to influenza vaccination show seroconversion signatures and convergent antibody rearrangements. Cell Host Microbe 16:105–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith K et al (2013) Fully human monoclonal antibodies from antibody secreting cells after vaccination with Pneumovax®23 are serotype specific and facilitate opsonophagocytosis. Immunobiol 218:745–754

    Article  CAS  Google Scholar 

  25. Briney BS, Willis JR, McKinney BA, Crowe JE (2012) High-throughput antibody sequencing reveals genetic evidence of global regulation of the naive and memory repertoires that extends across individuals. Genes Immun 13:469–473

    Article  CAS  PubMed  Google Scholar 

  26. Liu S et al (2005) Receptor editing can lead to allelic inclusion and development of B cells that retain antibodies reacting with high avidity autoantigens. J Immunol 175:5067–5076

    Article  CAS  PubMed  Google Scholar 

  27. Casellas R et al (2007) Igκ allelic inclusion is a consequence of receptor editing. J Exp Med 204:153–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Andrews SF et al (2013) Global analysis of B cell selection using an immunoglobulin light chain–mediated model of autoreactivity. J Exp Med 210:125–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Giachino C, Padovan E, Lanzavecchia A (1995) kappa+ lambda+ dual receptor B cells are present in the human peripheral repertoire. J Exp Med 181:1245–1250

    Article  CAS  PubMed  Google Scholar 

  30. DeKosky BJ et al (2013) High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nat Biotech 31:166–169

    Article  CAS  Google Scholar 

  31. Brochet X, Lefranc M-P, Giudicelli V (2008) IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res 36:W503–W508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ye J, Ma N, Madden TL, Ostell JM (2013) IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res 41:W34–W40

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ippolito GC et al (2012) Antibody repertoires in humanized NOD-scid-IL2R gamma(null) mice and human B cells reveals human-like diversification and tolerance checkpoints in the mouse. PLoS ONE 7:e35497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinform 26:2460–2461

    Article  CAS  Google Scholar 

  35. Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments: statistical applications in genetics and molecular biology. Stat Appl Genet Mol Biol 3 Article 3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon DeKosky .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

DeKosky, B. (2017). Paired VH:VL Analysis of Naïve B Cell Repertoires and Comparison to Antigen-Experienced B Cell Repertoires in Healthy Human Donors. In: Decoding the Antibody Repertoire. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-58518-5_4

Download citation

Publish with us

Policies and ethics