A Logic for Human Actions

Part of the Logic, Argumentation & Reasoning book series (LARI, volume 14)


The present paper introduces an action logic able to model human actions. We begin by providing an analysis of the proof-theory of action logics from the perspective of category theory. Action logics are classified as different types of monoidal deductive systems with respect to their categorical structure. This enables us to correlate the properties of the logical connectives with the type of deductive system that is used. We then provide a philosophical analysis of action connectives and, in light of our analysis, show which type of deductive system is required to model human actions. According to the usual distinction between actions and propositions in dynamic logic, we distinguish between an action logic, representing the formal structure of actions, and a propositional action logic, expressing the formal structure of the language we use to talk about actions.


Action negation Action disjunction Deductive systems Monoidal logics 



I would like to thank Jean-Pierre Marquis for many discussions on this subject. I am also grateful to Andrew Irvine, François Lepage and Yvon Gauthier for helpful comments and discussions. Thanks to an anonymous referee for comments on a previous draft of this paper. This research was financially supported by the Social Sciences and Humanities Research Council of Canada.


  1. 1.
    Abrusci, V. M. (1990a). A comparison between Lambek syntactic calculus and intuitionistic linear propositional logic. Mathematical Logic Quarterly, 36(1), 11–15.CrossRefGoogle Scholar
  2. 2.
    Abrusci, V. M. (1990b). Non-commutative intuitionistic linear logic. Mathematical Logic Quarterly, 36(4), 297–318.CrossRefGoogle Scholar
  3. 3.
    Abrusci, V. M. (1991). Phase semantics and sequent calculus for pure non-commutative classical linear propositional logic. The Journal of Symbolic Logic, 56(4), 1403–1451.CrossRefGoogle Scholar
  4. 4.
    Abrusci, V. M., & Ruet, P. (2000). Non-commutative logic I: The multiplicative fragment. Annals of Pure and Applied Logic, 101, 29–64.CrossRefGoogle Scholar
  5. 5.
    Awodey, S. (2006). Category theory (2nd ed.). Oxford University Press.Google Scholar
  6. 6.
    Baez, J. C., & Stay, M. (2011). Physics, topology, logic and computation: A Rosetta stone. In B. Coecke (Ed.), New structures for physics, Lecture Notes in Physics (Vol. 813, pp. 95–174). New York: Springer.Google Scholar
  7. 7.
    Balbiani, P. (2008). Propositional dynamic logic. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy.Google Scholar
  8. 8.
    Barr, M. (1979). \(*\) -autonomous categories, Lecture Notes in Mathematics (Vol. 752). Springer.Google Scholar
  9. 9.
    Barr, M. (1991). \(*\)-autonomous categories and linear logic. Mathematical Structures in Computer Science, 1(2), 159–178.CrossRefGoogle Scholar
  10. 10.
    Barr, M., & Wells, C. (1990). Category theory for computing science (Vol. 10). Prentice Hall.Google Scholar
  11. 11.
    Belnap, N., & Perloff, M. (1988). Seeing to it that: A canonical form for agentives. Theoria, 54(3), 175–199.CrossRefGoogle Scholar
  12. 12.
    Bimbó, K., & Dunn, J. M. (2005). Relational semantics for Kleene logic and action logic. Notre Dame Journal of Formal Logic, 46(4), 461–490.CrossRefGoogle Scholar
  13. 13.
    Blute, R., & Scott, P. (2004). Category theory for linear logicians. In T. Ehrhard, J. -Y. Girard, P. Ruet & P. Scott (Eds.), Linear Logic in Computer Science (Vol. 316, pp. 3–64). Cambridge University Press.Google Scholar
  14. 14.
    Broersen, J. (2004). Action negation and alternative reductions for dynamic deontic logics. Journal of Applied Logic, 2(1), 153–168.CrossRefGoogle Scholar
  15. 15.
    Broersen, J. (2011). Deontic epistemic stit logic distinguishing modes of mens rea. Journal of Applied Logic, 9(2), 137–152.CrossRefGoogle Scholar
  16. 16.
    Casadio, C. (2001). Non-commutative linear logic in linguistics. Grammars, 4(3), 167–185.CrossRefGoogle Scholar
  17. 17.
    Casadio, C., Scott, P. J., & Seely, R. A. G. (2004). Introduction: The Lambek program. In C. Casadio, P. J. Scott & R. A. G. Seely (Eds.), Language and grammar, studies in mathematical linguistics and natural language, pages xi-xxxi. Center for the Study of Language and Information.Google Scholar
  18. 18.
    Castro, P. F., & Maibaum, T. S. E. (2009). Deontic action logic, atomic Boolean algebras and fault-tolerance. Journal of Applied Logic, 7(4), 441–466.CrossRefGoogle Scholar
  19. 19.
    Chellas, B. F. (1969). The logical form of imperatives. Perry Lane Press.Google Scholar
  20. 20.
    Chellas, B. F. (1980). Modal logic: An introduction. Cambridge University Press.Google Scholar
  21. 21.
    Cockett, R., & Seely, R. A. G. (1997). Weakly distributive categories. Journal of Pure and Applied Algebra, 114(2), 133–173.CrossRefGoogle Scholar
  22. 22.
    Czelakowski, J. (1996). Elements of formal action theory. In A. Fuhrmann & H. Rott (Eds.), Logic, action, and information (pp. 3–62). de Gruyter.Google Scholar
  23. 23.
    Czelakowski, J. (1997). Action and deontology. In Logic, action and cognition, Trends in Logic (Vol. 2, pp. 47–87). Springer.Google Scholar
  24. 24.
    Czelakowski, J. (2015). Action and deontology. In Freedom and enforcement in action, Trends in Logic (Vol. 42, pp. 143–193). Springer.Google Scholar
  25. 25.
    Davidson, D. (1967). The logical form of action sentences. In The essential davidson (2006). Oxford University Press.Google Scholar
  26. 26.
    Duncan, R. (2006). Types for quantum computing. Ph. D. thesis, Oxford University.Google Scholar
  27. 27.
    Galatos, N., Jipsen, P., Kowalski, T., & Ono, H., (Eds.). (2007). Residuated lattices: An algebraic glimpse at substructural logics, Studies in Logic and the Foundations of Mathematics (Vol. 151). Elsevier.Google Scholar
  28. 28.
    Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science, 50(1), 1–102.CrossRefGoogle Scholar
  29. 29.
    Girard, J. -Y. (1995). Linear logic: Its syntax and its semantic. In J. -Y. Girard, Y. Lafont & L. Regnier (Eds.), Advances in linear logic (Vol. 222, pp. 1–42). Cambridge University Press.Google Scholar
  30. 30.
    Goldblatt, R. (2006). Topoi: The categorical analysis of logic. Dover Publications.Google Scholar
  31. 31.
    Goldman, A. I. (1970). A theory of human action. Princeton University Press.Google Scholar
  32. 32.
    Harel, D., Kozen, D., & Tiuryn, J. (2000). Dynamic logic. MIT Press.Google Scholar
  33. 33.
    Horty, J. (2001). Agency and deontic logic. Oxford University Press.Google Scholar
  34. 34.
    Horty, J., & Belnap, N. (1995). The deliberative stit: A study of action, omission, ability and obligation. Journal of Philosophical Logic, 24(6), 583–644.CrossRefGoogle Scholar
  35. 35.
    Jacobs, B. (1999). Categorical logic and type theory, Studies in Logic and the Foundations of Mathematics (Vol. 141). Elsevier.Google Scholar
  36. 36.
    Kanger, S. (1957). New foundations for ethical theory. Stockholm.Google Scholar
  37. 37.
    Kanger, S. (1971). New foundations for ethical theory. In R. Hilpinen (Ed.), Deontic logic: Introductory and systematic readings (pp. 36–58). D. Reidel Publishing Company.Google Scholar
  38. 38.
    Kanger, S. (1972). Law and logic. Theoria, 38(3), 105–132.CrossRefGoogle Scholar
  39. 39.
    Kanger, S., & Kanger, H. (1966). Rights and parliamentarism. Theoria, 32(2), 85–115.CrossRefGoogle Scholar
  40. 40.
    Kelly, G. M., & Laplaza, M. L. (1980). Coherence for compact closed categories. Journal of Pure and Applied Algebra, 19, 193–213.CrossRefGoogle Scholar
  41. 41.
    Kozen, D. (1997). Kleene algebra with tests. ACM Transactions on Programming Languages and Systems, 19(3), 427–443.CrossRefGoogle Scholar
  42. 42.
    Lambek, J. (1958). The mathematics of sentence structure. The American Mathematical Monthly, 65(3), 154–170.CrossRefGoogle Scholar
  43. 43.
    Lambek, J. (1968). Deductive systems and categories I. Mathematical Systems Theory, 2(4), 287–318.CrossRefGoogle Scholar
  44. 44.
    Lambek, J. (1969). Deductive systems and categories II. standard constructions and closed categories. In P. J. Hilton (Ed.), Category theory, homology theory and their applications I, Lecture Notes in Mathematics (Vol. 86, pp. 76–122). Springer.Google Scholar
  45. 45.
    Lambek, J., & cott, P. (1986). Introduction to higher order categorical logic. Cambridge University Press.Google Scholar
  46. 46.
    Lawvere, F. W. (1963). Functorial semantics of algebraic theories and some algebraic problems in the context of functorial semantics of algebraic theories. Ph.D. thesis, Columbia University.Google Scholar
  47. 47.
    Lenk, H. (1977). Complements and different lattice structures in a logic of action. Erkenntnis, 11(2), 251–268.CrossRefGoogle Scholar
  48. 48.
    Lindahl, L., & Odelstad, J. (2011). Stratification of normative systems with intermediaries. Journal of Applied Logic, 9(2), 113–136.CrossRefGoogle Scholar
  49. 49.
    Lucas, T. (2006). Von Wright’s action revisited: Actions as morphisms. Logique et Analyse, 49(193), 85–115.Google Scholar
  50. 50.
    Lucas, T. (2007). Axioms for action. Logique et Analyse, 50(200), 103–123.Google Scholar
  51. 51.
    Lucas, T. (2008). Deontic algebras of actions. Logique et Analyse, 51(202), 367–389.Google Scholar
  52. 52.
    Mac Lane, S. (1971). Categories for the working mathematician (2nd ed.). Springer.Google Scholar
  53. 53.
    Marquis, J. -P. (2009). From a geometrical point of view: A study of the history and philosophy of category theory. Springer.Google Scholar
  54. 54.
    Meyer, J.-J. C. (1987). A simple solution to the “deepest” paradox in deontic logic. Logique et Analyse, 30(117–118), 81–90.Google Scholar
  55. 55.
    Meyer, J.-J. C. (1988). A different approach to deontic logic: Deontic logic viewed as a variant of dynamic logic. Notre Dame Journal of Formal Logic, 29(1), 109–136.CrossRefGoogle Scholar
  56. 56.
    Mossel, B. (2009). Negative actions. Philosophia, 37(2), 307–333.CrossRefGoogle Scholar
  57. 57.
    Pacheco, O., & Carmo, J. (2003). A role based model for the normative specification of organized collective agency and agents interaction. Autonomous Agents and Multi-Agent Systems, 6(2), 145–184.CrossRefGoogle Scholar
  58. 58.
    Peterson, C. (2014). The categorical imperative: Category theory as a foundation for deontic logic. Journal of Applied Logic, 12(4), 417–461.CrossRefGoogle Scholar
  59. 59.
    Peterson, C. (2015). Contrary-to-duty reasoning: A categorical approach. Logica Universalis, 9(1), 47–92.CrossRefGoogle Scholar
  60. 60.
    Peterson, C. (2016) A comparison between monoidal and substructural logics. Journal of Applied Non-Classical Logics, 26(2), 126–159.Google Scholar
  61. 61.
    Pratt, V. (1976). Semantical considerations of Floyd-Hoare Logic. Technical Report MIT/LCS/TR-168.Google Scholar
  62. 62.
    Pratt, V. (1980). Application of modal logic to programming. Studia Logica, 39(2–3), 257–274.CrossRefGoogle Scholar
  63. 63.
    Pratt, V. (1991). Action logic and pure induction. In J. Eijck (Ed.), Logics in AI, Lecture Notes in Computer Science (Vol. 478, pp. 97–120). Springer.Google Scholar
  64. 64.
    Pörn, I. (1970). The logic of power. Basil Blackwell.Google Scholar
  65. 65.
    Reyes, G. E., & Zolfaghari, H. (1996). Bi-Heyting algebras, toposes and modalities. Journal of Philosophical Logic, 25(1), 25–43.CrossRefGoogle Scholar
  66. 66.
    Royakkers, L. (1998). Extending deontic logic for the formalisation of legal rules. Kluwer Academic Publishers.Google Scholar
  67. 67.
    Seely, R. A. G. (1989). Linear logic, \(*\)-autonomous categories and cofree coalgebras. In J. W. Gray & A. Scedrov (Eds.), In categories in computer science and logic, Contemporary Mathematics (Vol. 92, pp. 371–382).Google Scholar
  68. 68.
    Segerberg, K. (1982). A deontic logic of action. Studia Logica, 41(2), 269–282.CrossRefGoogle Scholar
  69. 69.
    Segerberg, K. (1992). Getting started: Beginnings in the logic of action. Studia Logica, 51(3), 347–378.CrossRefGoogle Scholar
  70. 70.
    Segerberg, K., Meyer, J. -J., & Kracht, M. (2009). The logic of action. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy.Google Scholar
  71. 71.
    Solin, K. (2012). Dual choice and iteration in an abstract algebra of action. Studia Logica, 100(3), 607–630.CrossRefGoogle Scholar
  72. 72.
    Trypuz, R., & Kulicki, P. (2010). Towards metalogical systematisation of deontic action logics based on Boolean algebra. In G. Governatori & G. Sartor (Eds.), DEON 2010, Lecture Notes in Computer Science (Vol. 6181, pp. 132–147). Springer.Google Scholar
  73. 73.
    van Benthem, J. (1991). Language in action: Categories, lambdas and dynamic Logic. Elsevier.Google Scholar
  74. 74.
    van der Meyden, R. (1996). The dynamic logic of permission. Journal of Logic and Computation, 6(3), 465–479.CrossRefGoogle Scholar
  75. 75.
    von Wright, G. H. (1963). Norm and action. Routledge & Kegan Paul.Google Scholar
  76. 76.
    von Wright, G. H. (1968). An essay in deontic logic and the general theory of action, Acta Philosophica Fennica (Vol. XXI). North-Holland Publishing Company.Google Scholar
  77. 77.
    Walton, D. (1980). Omitting, refraining and letting happen. American Philosophical Quarterly, 17(4), 319–326.Google Scholar
  78. 78.
    Wiseman, C. (1970). The theory of modal groups. The Journal of Philosophy, 67(11), 367–376.CrossRefGoogle Scholar
  79. 79.
    Xu, M. (1995). On the basic logic of stit with a single agent. The Journal of Symbolic Logic, 60(2), 459–483.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Munich Center for Mathematical PhilosophyMunichGermany

Personalised recommendations