Skip to main content

Metal Allergy: Copper

  • Chapter
  • First Online:
Metal Allergy
  • 1154 Accesses

Abstract

Worldwide production of copper is increasing. Among other sources, human skin is exposed to copper from jewellery, coins, door fittings, knobs and taps. Mucosal exposure occurs through dental materials and copper-containing intrauterine contraceptive devices. Despite the fact that several studies show release of copper ions from different materials in a biological-like milieu, and although copper has many chemical similarities with nickel, a strong sensitizer, only few cases of copper allergy have been reported. Hence, copper seems to be a weak sensitizer that should be considered in select cases. Here we review the sources of exposure, chemistry, biology and cumulative data including case reports to clarify the implications of copper allergy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. London Metal Exchange. http://www.lme.com/metals/non-ferrous/copper/. Accessed 11 May 2016.

  2. Emsley J. Nature’s building blocks: an A-Z guide to the elements. Oxford: Oxford University Press; 2003. p. 121–5.

    Google Scholar 

  3. Suárez CP, Fernández-Redondo V, Toribio J. Bingo-hall worker’s occupational copper contact dermatitis from coins. Contact Dermatitis. 2002;47:182.

    Article  Google Scholar 

  4. Wöhrl S, Hemmer W, Focke M, Götz M, Jarisch R. Copper allergy revisited. J Am Acad Dermatol. 2001;45:863–70.

    Article  Google Scholar 

  5. Hamann CR, Hamann D, Hamann C, Thyssen JP, Lidén C. The cost of nickel allergy: a global investigation of coin composition and nickel and cobalt release. Contact Dermatitis. 2013;68:15–22.

    Article  CAS  Google Scholar 

  6. Thyssen JP, Gawkrodger DJ, White IR, Julander A, Menné T, Lidén C. Coin exposure may cause allergic nickel dermatitis: a review. Contact Dermatitis. 2013;68:3–14.

    Article  CAS  Google Scholar 

  7. Flint GN. A metallurgical approach to metal contact dermatitis. Contact Dermatitis. 1998;39:213–21.

    Article  CAS  Google Scholar 

  8. Hamann D, Thyssen JP, Hamann CR, Hamann C, Menné T, Johansen JD, Spiewak R, Maibach H, Lundgren L, Lidén C. Jewellery: alloy composition and release of nickel, cobalt and lead assessed with the EU synthetic sweat method. Contact Dermatitis. 2015;73(4):231–8.

    Article  CAS  Google Scholar 

  9. Stoffolani N, Damiani F, Lilli C, et al. Ion release from orthodontic appliances. J Dent. 1999;27:449–54.

    Article  Google Scholar 

  10. Vilaplana J, Romaguera C. New developments in jewellery and dental materials. Contact Dermatitis. 1998;39:55–7.

    Article  CAS  Google Scholar 

  11. Hostynek JJ, Maibach HI. Copper hypersensitivity: dermatologic aspects – an overview. Rev Environ Health. 2003;18:153–83.

    Article  CAS  Google Scholar 

  12. Vilaplana J, Romaguera C. Contact dermatitis and adverse oral mucous membrane reactions related to the use of dental prostheses. Contact Dermatitis. 2000;43:183–5.

    CAS  PubMed  Google Scholar 

  13. Sonfield A. Popularity disparity: attitudes about the IUD in Europe and the United States, The Guttmacher Institute. 2012. https://en.wikipedia.org/wiki/IUD_with_copper#Prevalence. Accessed 11 May 2016.

  14. Frentz G, Teilum D. Cutaneous eruptions and intrauterine contraceptive copper device. Acta Derm Venereol. 1980;60:69–71.

    CAS  PubMed  Google Scholar 

  15. Sven OS, Kresten RP. Danish Society of Obstetrics and Gynecology, authors translation. 2013. http://pro.medicin.dk/Laegemiddelgrupper/Grupper/141010. Accessed 11 May 2016.

  16. Rademaker M. Occupational contact dermatitis among New Zealand farmers. Australas J Dermatol. 1998;39:164–7.

    Article  CAS  Google Scholar 

  17. Warnes SL, Keevil CW. Death and genome destruction of methicillin-resistant and methicillin-sensitive strains of Staphylococcus aureus on wet or dry copper alloy surfaces does not involve Fenton chemistry. Appl Environ Microbiol. 2016. pii: AEM.03861-15 [Epub ahead of print].

    Google Scholar 

  18. Warnes SL, Summersgill EN, Keevil CW. Inactivation of murine norovirus on a range of copper alloy surfaces is accompanied by loss of capsid integrity. Appl Environ Microbiol. 2015;81(3):1085–91.

    Article  Google Scholar 

  19. Warnes SL, Highmore CJ, Keevil CW. Horizontal transfer of antibiotic resistance genes on abiotic touch surfaces: implications for public health. MBio. 2012;3(6). pii: e00489-12.

    Google Scholar 

  20. Salgado CD, Sepkowitz KA, John JF, Cantey JR, Attaway HH, Freeman KD, Sharpe PA, Michels HT, Schmidt MG. Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. Infect Control Hosp Epidemiol. 2013;34(5):479–86.

    Article  Google Scholar 

  21. Michels HT, Noyce JO, Keevil CW. Effects of temperature and humidity on the efficacy of methicillin-resistant staphylococcus aureus challenged antimicrobial materials containing silver and copper. Lett Appl Microbiol. 2009;49:191–5.

    Article  CAS  Google Scholar 

  22. Mehtar S, Wiid I, Todorov SD. The antimicrobial activity of copper and copper alloys against nosocomial pathogens and mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study. J Hosp Infect. 2008;68:45–51.

    Article  CAS  Google Scholar 

  23. Noyce JO, Michels H, Keevil CW. Inactivation of influenza A virus on copper versus stainless steel surfaces. Appl Environ Microbiol. 2007;73:2748–50.

    Article  CAS  Google Scholar 

  24. Sun LH. The bacteria-fighting super element that’s making a comeback in hospitals: copper. The Washington Post. 20 Sept 2015.

    Google Scholar 

  25. Global Rail News. Chilean subway protected with antimicrobial copper. 2011. http://www.globalrailnews.com/2011/07/22/chilean-subway-protected-with-antimicrobial-copper/. Accessed 11 May 2016.

  26. Bryony S. Copper Development Association. Chilean subway protected with antimicrobial copper. 2011. http://www.antimicrobialcopper.org/uk/case-studies. Accessed 11 May 2016.

  27. Boman A, Karlberg AT, Einarsson O, Wahlberg JE. Dissolving of copper by synthetic sweat. Contact Dermatitis. 1983;9:159–60.

    Article  CAS  Google Scholar 

  28. Lidén C, Nordenadler M, Skare L. Metal release from gold-containing jewelry materials: no gold release detected. Contact Dermatitis. 1998;39:281–5.

    Article  Google Scholar 

  29. Fournier PG, Govers TR. Contamination by nickel, copper and zinc during the handling of euro coins. Contact Dermatitis. 2003;48:181–8.

    Article  CAS  Google Scholar 

  30. Fukuyama T, Ueda H, Hayashi K, et al. Sensitizing potential of chromated copper arsenate in local lymph node assays differs with the solvent used. J Immunotoxicol. 2008;5:99–106.

    Article  CAS  Google Scholar 

  31. Basketter DA, Gerberick GF, Kimber I, Loveless SE. The local lymph node assay: a viable alternative to currently accepted skin sensitization tests. Food Chem Toxicol. 1996;34:985–97.

    Article  CAS  Google Scholar 

  32. Haneke KE, Tice RR, Carson BL, Margolin BH, Stokes WS. ICCVAM evaluation of the murine local lymph node assay. Data analyses completed by the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods. Regul Toxicol Pharmacol. 2001;34:274–86.

    Article  CAS  Google Scholar 

  33. Boman A, Wahlberg JE, Hagelthorn G. Sensitizing potential of beryllium, copper and molybdenum compounds studied by the guinea pig maximization method. Contact Dermatitis. 1979;5:332–3.

    Article  CAS  Google Scholar 

  34. Karlberg AT, Boman A, Wahlberg JE. Copper – a rare sensitizer. Contact Dermatitis. 1983;9:134–9.

    Article  CAS  Google Scholar 

  35. Basketter DA, Scholes EW. Comparison of the local lymph node assay with the guinea-pig maximization test for the detection of a range of contact allergens. Food Chem Toxicol. 1992;30:65–9.

    Article  CAS  Google Scholar 

  36. Ikarashi Y, Tsuchiya T, Nakamura A. Detection of contact sensitivity of metal salts using the murine local lymph node assay. Toxicol Lett. 1992;62:53–61.

    Article  CAS  Google Scholar 

  37. Yamano T, Shimizu M, Noda T. Allergenicity and cross-reactivity of naphthenic acid and its metallic salts in experimental animals. Contact Dermatitis. 2006;54:25–8.

    Article  CAS  Google Scholar 

  38. Nonaka H, Nakada T, Iijima M, Maibach HI. Metal patch test results from 1990–2009. J Dermatol. 2011;38:267–71.

    Article  Google Scholar 

  39. Lee JY, Yoo JM, Cho BK, Kim HO. Contact dermatitis in Korean dental technicians. Contact Dermatitis. 2001;45:13–6.

    Article  CAS  Google Scholar 

  40. Wöhrl S, Kriechbaumer N, Hemmer W, et al. A cream containing the chelator DTPA (diethylenetriaminepenta-acetic acid) can prevent contact allergic reactions to metals. Contact Dermatitis. 2001;44:224–8.

    Article  Google Scholar 

  41. Epstein S. Cross-sensitivity between nickel and copper; with remarks on cross-sensitivity between nickel, cobalt and chromates. J Invest Dermatol. 1955;25:269–74.

    Article  CAS  Google Scholar 

  42. Dhir GG, Rao DS, Mehrotra MP. Contact dermatitis caused by copper sulfate used as coloring material in commercial alcohol. Ann Allergy. 1977;39:204.

    CAS  PubMed  Google Scholar 

  43. Walton S. Investigation into patch testing with copper sulphate. Contact Dermatitis. 1983;9:89–90.

    Article  CAS  Google Scholar 

  44. Lisi P, Caraffini S, Assalve D. Irritation and sensitization potential of pesticides. Contact Dermatitis. 1987;17:212–8.

    Article  CAS  Google Scholar 

  45. Romaguera C, Grimalt F, Vilaplana J. Contact dermatitis from nickel: an investigation of its sources. Contact Dermatitis. 1988;19:52–7.

    Article  CAS  Google Scholar 

  46. van Joost T, Habets JM, Stolz E, Naafs B. The meaning of positive patch tests to copper sulphate in nickel allergy. Contact Dermatitis. 1988;18:101–2.

    Article  Google Scholar 

  47. Santucci B, Cannistraci C, Cristaudo A, Picardo M. Interaction of metals in nickel-sensitive patients. Contact Dermatitis. 1993;29:251–3.

    Article  CAS  Google Scholar 

  48. Lisi P, Brunelli L, Stingeni L. Co-sensitivity between cobalt and other transition metals. Contact Dermatitis. 2003;48:172–3.

    Article  Google Scholar 

  49. Stenman E, Bergman M. Hypersensitivity reactions to dental materials in a referred group of patients. Scand J Dent Res. 1989;97:76–83.

    CAS  PubMed  Google Scholar 

  50. Vilaplana J, Romaguera C, Cornellana F. Contact dermatitis and adverse oral mucous membrane reactions related to the use of dental prostheses. Contact Dermatitis. 1994;30:80–4.

    Article  CAS  Google Scholar 

  51. Marcusson JA. Contact allergies to nickel sulfate, gold sodium thiosulfate and palladium chloride in patients claiming side-effects from dental alloy components. Contact Dermatitis. 1996;34:320–3.

    Article  CAS  Google Scholar 

  52. Laine J, Happonen RP, Vainio O, Kalimo K. In vitro lymphocyte proliferation test in the diagnosis of oral mucosal hypersensitivity reactions to dental amalgam. J Oral Pathol Med. 1997;26:362–6.

    Article  CAS  Google Scholar 

  53. Koch P, Bahmer FA. Oral lesions and symptoms related to metals used in dental restorations: a clinical, allergological, and histologic study. J Am Acad Dermatol. 1999;41(Pt 1):422–30.

    Article  CAS  Google Scholar 

  54. Kanerva L, Rantanen T, Aalto-Korte K, et al. A multicenter study of patch test reactions with dental screening series. Am J Contact Dermat. 2001;12:83–7.

    CAS  PubMed  Google Scholar 

  55. Ditrichova D, Kapralova S, Tichy M, et al. Oral lichenoid lesions and allergy to dental materials. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2007;151:333–9.

    Article  Google Scholar 

  56. Oshima H, Kawahara D, Kosugi H, Nakamura M, Sugai T, Tamaki T. Epidemiologic study on occupational allergy in the dental clinic. Contact Dermatitis. 1991;24:138–9.

    Article  CAS  Google Scholar 

  57. Kawahara D, Oshima H, Kosugi H, Nakamura M, Sugai T, Tamaki T. Further epidemiologic study of occupational contact dermatitis in the dental clinic. Contact Dermatitis. 1993;28:114–5.

    Article  CAS  Google Scholar 

  58. Kanerva L, Estlander T, Jolanki R, Tarvainen K. Occupational allergic contact dermatitis caused by exposure to acrylates during work with dental prostheses. Contact Dermatitis. 1993;28:268–75.

    Article  CAS  Google Scholar 

  59. Uveges RE, Grimwood RE, Slawsky LD, Marks JG Jr. Epidemiology of hand dermatitis in dental personnel. Mil Med. 1995;160:335–8.

    Article  CAS  Google Scholar 

  60. Dry J, Leynadier F, Bennani A, Piquet P, Salat J. Intrauterine copper contraceptive devices and allergy to copper and nickel. Ann Allergy. 1978;41:194.

    CAS  PubMed  Google Scholar 

  61. Jouppila P, Niinimäki A, Mikkonen M. Copper allergy and copper IUD. Contraception. 1979;19:631–7.

    Article  CAS  Google Scholar 

  62. Romaguera C, Grimalt F. Contact dermatitis from a copper-containing intrauterine contraceptive device. Contact Dermatitis. 1981;7:163–4.

    Article  CAS  Google Scholar 

  63. Motolese A, Truzzi M, Giannini A, Seidenari S. Contact dermatitis and contact sensitization among enamellers and decorators in the ceramics industry. Contact Dermatitis. 1993;28:59–62.

    Article  CAS  Google Scholar 

  64. Santucci B, Cannistraci C, Cristaudo A, Picardo M. Multiple sensitivities to transition metals: the nickel palladium reactions. Contact Dermatitis. 1996;35:283–6.

    Article  CAS  Google Scholar 

  65. Nakada T, Iijima M, Nakayama H, Maibach HI. Role of ear piercing in metal allergic contact dermatitis. Contact Dermatitis. 1997;36:233–6.

    Article  CAS  Google Scholar 

  66. Walton S. Patch testing with copper sulphate. Contact Dermatitis. 1983;9:337.

    Article  CAS  Google Scholar 

  67. Pistoor FH, Kapsenberg ML, Bos JD, Meinardi MM, von Blomberg ME, Scheper RJ. Cross-reactivity of human nickel-reactive T-lymphocyte clones with copper and palladium. J Invest Dermatol. 1995;105:92–5.

    Article  CAS  Google Scholar 

  68. Barranco VP. Eczematous dermatitis caused by internal exposure to copper. Arch Dermatol. 1972;106:386–7.

    Article  CAS  Google Scholar 

  69. Barkoff JR. Urticaria secondary to a copper intrauterine device. Int J Dermatol. 1976;15:594–5.

    Article  CAS  Google Scholar 

  70. Förström L, Kiistala R, Tarvainen K. Hypersensitivity to copper verified by test with 0.1% CuSO4. Contact Dermatitis. 1977;3:280–1.

    Article  Google Scholar 

  71. Shelley WB, Shelley ED, Ho AK. Cholinergic urticaria: acetylcholine-receptor-dependent immediate-type hypersensitivity reaction to copper. Lancet. 1983;1:843–6.

    Article  CAS  Google Scholar 

  72. Bezzon OL. Allergic sensitivity to several base metals: a clinical report. J Prosthet Dent. 1993;69:243–4.

    Article  CAS  Google Scholar 

  73. Saltzer EI, Wilson JW. Allergic contact dermatitis due to copper. Arch Dermatol. 1968;98:375–6.

    Article  Google Scholar 

  74. van Joost TH, van Ulsen J, van Loon LA. Contact allergy to denture materials in the burning mouth syndrome. Contact Dermatitis. 1988;18:97–9.

    Article  Google Scholar 

  75. Sterry W, Schmoll M. Contact urticaria and dermatitis from self-adhesive pads. Contact Dermatitis. 1985;13:284–5.

    Article  CAS  Google Scholar 

  76. Laubstein B. Copper allergy – a rare form of sensitization. Dermatol Monatsschr. 1990;176:421–5.

    CAS  PubMed  Google Scholar 

  77. Romagnoli P, Labhardt AM, Sinigaglia F. Selective interaction of Ni with an MHC-bound peptide. EMBO J. 1991;10:1303–6.

    Article  CAS  Google Scholar 

  78. Romagnoli P, Spinas GA, Sinigaglia F. Gold-specific T cells in rheumatoid arthritis patients treated with gold. J Clin Invest. 1992;89:254–8.

    Article  CAS  Google Scholar 

  79. Sinigaglia F. The molecular basis of metal recognition by T cells. J Invest Dermatol. 1994;102:398–401.

    Article  CAS  Google Scholar 

  80. Moulon C, Vollmer J, Weltzien HU. Characterization of processing requirements and metal cross-reactivities in T cell clones from patients with allergic contact dermatitis to nickel. Eur J Immunol. 1995;25:3308–15.

    Article  CAS  Google Scholar 

  81. Ross-Hansen K, Østergaard O, Tanassi JT, Thyssen JP, Johansen JD, Menné T, Heegaard NH. Filaggrin is a predominant member of the denaturation-resistant nickel-binding proteome of human epidermis. J Invest Dermatol. 2014;134(4):1164–6.

    Article  CAS  Google Scholar 

  82. Martin SF, Esser PR, Weber FC, et al. Mechanisms of chemical-induced innate immunity in allergic contact dermatitis. Allergy. 2011;66:1152–63.

    Article  CAS  Google Scholar 

  83. Rachmawati D, Bontkes HJ, Verstege MI, et al. Transition metal sensing by Toll-like receptor-4: next to nickel, cobalt and palladium are potent human dendritic cell stimulators. Contact Dermatitis. 2013;68:331–8.

    Article  CAS  Google Scholar 

  84. Schmidt M, Raghavan B, Müller V, et al. Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat Immunol. 2010;11:814–9.

    Article  CAS  Google Scholar 

  85. Downey D. Porphyria induced by palladium–copper dental prostheses: a clinical report. J Prosthet Dent. 1992;67:5–6.

    Article  CAS  Google Scholar 

  86. Black H. Dermatitis from nickel and copper in coins. Contact Dermatitis Newslett. 1972;12:326–7.

    Google Scholar 

  87. Walker-Smith PK, Keith DJ, Kennedy CT, Sansom JE. Allergic contact dermatitis caused by copper. Contact Dermatitis. 2016;75(3):186–7.

    Article  Google Scholar 

  88. Vergara G, Silvestre JF, Botella R, Albares MP, Pascual JC. Oral lichen planus and sensitization to copper sulfate. Contact Dermatitis. 2004;50:374.

    Article  CAS  Google Scholar 

  89. Reid DJ. Allergic reaction to copper cement. Br Dent J. 1968;125:92.

    CAS  PubMed  Google Scholar 

  90. Frykholm KO, Frithiof L, Fernström AI, Moberger G, Blohm SG, Björn E. Allergy to copper derived from dental alloys as a possible cause of oral lesions of lichen planus. Acta Derm Venereol. 1969;49:268–81.

    CAS  PubMed  Google Scholar 

  91. Rongioletti F, Rivara G, Rebora A. Contact dermatitis to a copper-containing intra-uterine device. Contact Dermatitis. 1985;13:343.

    Article  CAS  Google Scholar 

  92. Pujol RM, Randazzo L, Miralles J, Alomar A. Perimenstrual dermatitis secondary to a copper-containing intrauterine contraceptive device. Contact Dermatitis. 1998;38:288.

    Article  CAS  Google Scholar 

  93. Purello D’Ambrosio F, Ricciardi L, Isola S, et al. Systemic contact dermatitis to copper-containing IUD. Allergy. 1996;51:658–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon W. Fage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fage, S.W. (2018). Metal Allergy: Copper. In: Chen, J., Thyssen, J. (eds) Metal Allergy. Springer, Cham. https://doi.org/10.1007/978-3-319-58503-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58503-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58502-4

  • Online ISBN: 978-3-319-58503-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics