Advertisement

Metal Allergy pp 125-133 | Cite as

Assessment for Metal Allergy: In Vitro Assays

  • Thomas Rustemeyer
Chapter

Abstract

Cutaneous exposure to metal salts may result in sensitization to metals and lead to allergic contact dermatitis. To date, patch testing is the method of choice for diagnosing metal allergy in a clinical setting. However, this method has its limitations, such as boosting of existing sensitization, activating sensitization by testing, or interobserver variability. Therefore, a reliable alternative method for routine diagnosis would be of significant use. Possible alternatives to patch testing are in vitro proliferation assays, such as the lymphocyte transformation test (LTT). LTT is used to establish in vitro whether a patient has developed a T-cell response against a certain metal and is mainly used in an experimental setting. This chapter aims to determine the validity of LTT for routine metal allergy diagnosis based on available peer-reviewed medical literature. Due to the limited number of published articles concerning sensitivity, specificity, and reproducibility of LTT for the diagnosis of metal allergies, it is impossible to draw firm conclusions regarding the validity of in vitro tests. Nevertheless, this chapter will provide an overview on the available scientific data and, by pin-pointing the current needs, suggest new approaches.

Keywords

Metal allergy Allergic contact dermatitis Lymphocyte transformation test LTT Lymphocyte proliferation test LPT Lymphocyte activation test Memory lymphocyte immune-stimulation assay 

References

  1. 1.
    Cavani A, Mei D, Guerra E, Corinti S, Giani M, Pirrotta L, Girolomoni G. Patients with allergic contact dermatitis to nickel and nonallergic individuals display different nickel-specific T cell responses. Evidence for the presence of effector CD8+; and regulatory CD4+ T cells. J Investig Dermatol. 1998;111(4):621–8.CrossRefGoogle Scholar
  2. 2.
    Rustemeyer T, van Hoogstraten IM, von Blomberg BME, Scheper RJ. Mechanisms of allergic contact dermatitis. Kanerva’s Occup Dermatol. 2012;1:113–46.Google Scholar
  3. 3.
    Marks JG Jr, Belsito DV, DeLeo VA, Fowler JF Jr, Fransway AF, Maibach HI, Taylor JS. North American Contact Dermatitis Group patch-test results, 1996–1998. Arch Dermatol. 2000;136(2):272–4.CrossRefGoogle Scholar
  4. 4.
    Fischer T, Rystedt I. False-positive, follicular and irritant patch teat reactions to metal salts. Contact Dermatitis. 1985;12(2):93–8.CrossRefGoogle Scholar
  5. 5.
    Bruze M, Isaksson M, Edman B, Björkner B, Fregert S, Möller H. A study on expert reading of patch test reactions: inter-individual accordance. Contact Dermatitis. 1995;32(6):331–7.CrossRefGoogle Scholar
  6. 6.
    Gollhausen R, Przybilla B, Ring J. Reproducibility of patch tests. J Am Acad Dermatol. 1989;21(6):1196–202.CrossRefGoogle Scholar
  7. 7.
    Hindsén M, Bruze M, Christensen OB. Individual variation in nickel patch test reactivity. Dermatitis. 1999;10(2):62–7.CrossRefGoogle Scholar
  8. 8.
    Van Strien GA, Korstanje MJ. Site variations in patch test responses on the back. Contact Dermatitis. 1994;31(2):95–6.CrossRefGoogle Scholar
  9. 9.
    Bruze M, Conde-Salazar L, Goossens A, Kanerva L, White IR. Thoughts on sensitizers in a standard patch test series. Contact Dermatitis. 1999;41(5):241–50.CrossRefGoogle Scholar
  10. 10.
    Johansen JD, Aalto-Korte K, Agner T, Andersen KE, Bircher A, Bruze M, Cannavó A, Giménez-Arnau A, Gonçalo M, Goossens A, John SM, Lidén C, Lindberg M, Mahler V, Matura M, Rustemeyer T, Serup J, Spiewak R, Thyssen JP, Vigan M, White IR, Wilkinson M, Uter W. European Society of Contact Dermatitis guideline for diagnostic patch testing - recommendations on best practice. Contact Dermatitis. 2015 Oct;73(4):195–22.CrossRefGoogle Scholar
  11. 11.
    Macleod TM, Hutchinson F, Raffle EJ. The uptake of labelled thymidine by leucocytes of nickel sensitive patients. Br J Dermatol. 1970;82(5):487–92.CrossRefGoogle Scholar
  12. 12.
    Hallab NJ, Jacobs JJ. Biologic effects of implant debris. Bull NYU Hosp Jt Dis. 2009;67(2):182.PubMedGoogle Scholar
  13. 13.
    Pichler W. Lymphocyte transformation test. In:Encyclopedic reference of immunotoxicology. Berlin: Springer; 2005. p. 405–8.CrossRefGoogle Scholar
  14. 14.
    Hallab NJ, Caicedo M, Epstein R, McAllister K, Jacobs JJ. In vitro reactivity to implant metals demonstrates a person-dependent association with both T-cell and B-cell activation. J Biomed Mater Res A. 2010;92(2):667–82.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Pichler WA, Tilch J. The lymphocyte transformation test in the diagnosis of drug hypersensitivity. Allergy. 2004;59(8):809–20.CrossRefGoogle Scholar
  16. 16.
    Valentine-Thon E, Schiwara HW. Validity of MELISA® for metal sensitivity testing. Neuroendocrinol Lett. 2003;24(1/2):57–64.PubMedGoogle Scholar
  17. 17.
    Stejskal VDM, Cederbrant K, Lindvall A, Forsbeck M. MELISA—an in vitro tool for the study of metal allergy. Toxicol In Vitro. 1994;8(5):991–1000.CrossRefGoogle Scholar
  18. 18.
    Stejskal VD, Danersund A, Lindvall A, Hudecek R, Nordman V, Yaqob A, Lindh U. Metal-specific lymphocytes: biomarkers of sensitivity in man. Neuroendocrinol Lett. 1999;20:289–98.PubMedGoogle Scholar
  19. 19.
    Everness KM, Gawkrodger DJ, Botham PA, Hunter JAA. The discrimination between nickel-sensitive and non-nickel-sensitive subjects by an in vitro lymphocyte transformation test. Br J Dermatol. 1990;122(3):293–8.CrossRefGoogle Scholar
  20. 20.
    Svejgaard E, Morling N, Svejgaard A, Veien NK. Lymphocyte transformation induced by nickel sulphate: an in vitro study of subjects with and without a positive nickel patch test. Acta Derm Venereol. 1977;58(3):245–50.Google Scholar
  21. 21.
    Thomas P, Bandl WD, Maier S, Summer B, Przybilla B. Hypersensitivity to titanium osteosynthesis with impaired fracture healing, eczema, and T-cell hyperresponsiveness in vitro: case report and review of the literature. Contact Dermatitis. 2006;55(4):199–202.CrossRefGoogle Scholar
  22. 22.
    Zitter H, Plenk H. The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility. J Biomed Mater Res. 1987;21(7):881–96.CrossRefGoogle Scholar
  23. 23.
    Muller K, Valentine-Thon E. Hypersensitivity to titanium: clinical and laboratory evidence. Neuroendocrinol Lett. 2006;27(1):31–5.PubMedGoogle Scholar
  24. 24.
    Lindemann M, Rietschel F, Zabel M, Grosse-Wilde H. Detection of chromium allergy by cellular in vitro methods. Clin Exp Allergy. 2008;38(9):1468–75.CrossRefGoogle Scholar
  25. 25.
    Lohmann CH, Hameister R, Singh G. Allergies in orthopaedic and trauma surgery. Orthop Traumatol Surg Res. 2016;pii:S1877–0568.Google Scholar
  26. 26.
    Hallab NJ, Anderson S, Stafford T, Glant T, Jacobs JJ. Lymphocyte responses in patients with total hip arthroplasty. J Orthop Res. 2005;23(2):384–91.CrossRefGoogle Scholar
  27. 27.
    Valentine-Thon E, Muller K, Guzzi G, Kreisel S, Ohnsorge P, Sandkamp M. LTT-MELISA® is clinically relevant for detecting and monitoring metal sensitivity. Neuroendocrinol Lett. 2006;27(1):17–24.PubMedGoogle Scholar
  28. 28.
    Nyfeler B, Pichler WJ. The lymphocyte transformation test for the diagnosis of drug allergy: sensitivity and specificity. Clin Exp Allergy. 1997;27(2):175–81.CrossRefGoogle Scholar
  29. 29.
    Cederbrant K, Hultman P, Marcusson JA, Tibbling L. In vitro lymphocyte proliferation as compared to patch test using gold, palladium and nickel. Int Arch Allergy Immunol. 1997;112(3):212–7.CrossRefGoogle Scholar
  30. 30.
    Cederbrant K, Gunnarsson LG, Hultman P, Norda R, Tibbling-Grahn L. In vitro lymphoproliferative assays with HgCl2 cannot identify patients with systemic symptoms attributed to dental amalgam. J Dent Res. 1999;78(8):1450–8.CrossRefGoogle Scholar
  31. 31.
    Martins LEAM, Da Silva Duarte AJ, Aoki V, Nunes RS, Ogusuku S, Reis VMS. Lymphocyte proliferation testing in chromium allergic contact dermatitis. Clin Exp Dermatol. 2008;33(4):472–7.CrossRefGoogle Scholar
  32. 32.
    Goutam M, Giriyapura C, Mishra SK, Gupta S. Titanium allergy: A literature review. Indian J Dermatol. 2014;59(6):630.CrossRefGoogle Scholar
  33. 33.
    Dickel H, Altmeyer P, Brasch J. “New” techniques for more sensitive patch testing? JDDG. 2011;9(11):889–96.PubMedGoogle Scholar
  34. 34.
    Rustemeyer T, Von Blomberg BME, Van Hoogstraten IMW, Bruynzeel DP, Scheper RJ. Analysis of effector and regulatory immune reactivity to nickel. Clin Exp Allergy. 2004;34(9):1458–66.CrossRefGoogle Scholar
  35. 35.
    McKimm-Breschkin JL, Mottram PL, Thomas WR, Miller JF. Antigen-specific production of immune interferon by T Cells lines. J Exp Med. 1982;155(4):1204–9.CrossRefGoogle Scholar
  36. 36.
    Cavani A, Albanesi C, Traidl C, Sebastiani S, Girolomoni G. Effector and regulatory T cells in allergic contact dermatitis. Trends Immunol. 2001;22(3):118–20.CrossRefGoogle Scholar
  37. 37.
    Minang JT, Troye-Blomberg M, Lundeberg L, Ahlborg N. Nickel Elicits Concomitant and Correlated in vitro Production of Th1-, Th2-Type and Regulatory Cytokines in Subjects with Contact Allergy to Nickel. Scand J Immunol. 2005;62(3):289–96.CrossRefGoogle Scholar
  38. 38.
    Cederbrant K, Anderson C, Andersson T, Marcusson-Ståhl M, Hultman P. Cytokine production, lymphocyte proliferation and T-Cell receptor Vβ expression in primary peripheral blood mononuclear cell cultures from Nickel-Allergic individuals. Int Arch Allergy Immunol. 2003;132(4):373–9.CrossRefGoogle Scholar
  39. 39.
    Spiewak R, Moed H, Von Blomberg BME, Bruynzeel DP, Scheper RJ, Gibbs S, Rustemeyer T. Allergic contact dermatitis to nickel: modified in vitro test protocols for better detection of allergen-specific response. Contact Dermatitis. 2007;56(2):63–9.CrossRefGoogle Scholar
  40. 40.
    Minang JT, Areström I, Troye-Blomberg M, Lundeberg L, Ahlborg N. Nickel, cobalt, chromium, palladium and gold induce a mixed Th1-and Th2-type cytokine response in vitro in subjects with contact allergy to the respective metals. Clin Exp Immunol. 2006;146(3):417–26.CrossRefGoogle Scholar
  41. 41.
    Hagemann T, Schlütter-Böhmer B, Allam JP, Bieber T, Novak N. Positive lymphocyte transformation test in a patient with allergic contact dermatitis of the scalp after short-term use of topical minoxidil solution. Contact Dermatitis. 2005;53(1):53–5.CrossRefGoogle Scholar
  42. 42.
    Koene AP. The ‘memory lymphocyte immunostimulation assay’ (MELISA) is useless for the detection of metal allergy. Ned Tijdschr Geneeskd. 2006;150(9):520.Google Scholar
  43. 43.
    Muris J, Feilzer AJ, Kleverlaan CJ, Rustemeyer T, van Hoogstraten IM, Scheper RJ, von Blomberg BM. Palladium-induced Th2 cytokine responses reflect skin test reactivity. Allergy. 2012;67(12):1605–8.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Spoerri I, Scherer K, Michel S, Link S, Bircher AJ, Heijnen IA. Detection of nickel and palladium contact hypersensitivity by a flow cytometric lymphocyte proliferation test. Allergy. 2015 Mar;70(3):323–7.CrossRefGoogle Scholar
  45. 45.
    Summer B, Ständer S, Kapp F, Thomas P. Role of the lymphocyte transformation test in the evaluation of metal sensitization. Hautarzt. 2016 May;67(5):380–4.CrossRefGoogle Scholar
  46. 46.
    Hallab NJ, Mikecz K, Jacobs JJ. A triple assay technique for the evaluation of metal-induced, delayed-type hypersensitivity responses in patients with or receiving total joint arthroplasty. J Biomed Mater Res. 2000;53(5):480–9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Dermatology and AllergologyVU University Medical Center AmsterdamHV AmsterdamThe Netherlands

Personalised recommendations