Skip to main content

Uptake and Toxicity of Nanomaterials in Plants

  • Chapter
  • First Online:
Nanoscience in Food and Agriculture 5

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 26))

Abstract

Rapid development of nanomaterials has induced their diffusion in our environment, reaching plants that are the primary link of the food chain. Studies show that plant behaviour is changing by interaction with nanomaterials, notably due to their toxicity. Plant physiological barriers are providing some resistance against nanomaterial-mediated toxicity. Indeed, plant turn on and off machinery to overcome nanomaterial-mediated stresses, which result in unusual growth patterns. This article reviews the mechanisms of interaction of nanomaterials with plants, with focus on uptake, translocation and toxicity behaviour at physiological, proteomic, transcriptomic and metabolomic level. We discuss the toxicity of the following nanomaterials: silver, CeO2, ZnO, cupric oxide, fullerene, nickel oxide, zero valent iron, gold, aluminium oxide, titania and silica.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anjum NA, Singh N, Singh MK, Sayeed I, Duarte AC, Pereira E, Ahmad I (2013) Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.) Sci Total Environ 472:834–841. doi:10.1016/j.scitotenv.2013.11.018

    Article  PubMed  CAS  Google Scholar 

  • Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32(5):577–584. doi:10.1111/j.1365-3040.2009.01952.x

    Article  CAS  PubMed  Google Scholar 

  • Atha DH, Wang HH, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing BS, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827. doi:10.1021/es202660k

    Article  CAS  PubMed  Google Scholar 

  • Auffan M, Achouak W, Rose J, Roncato MA, Chanéac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero JY (2008) Relation between the redox state of iron-based anoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42:6730–6735

    Article  CAS  PubMed  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47(1):1–8. doi:10.1016/j.plaphy.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  • Balaji S, Mandal BK, Shivendu R, Nandita D, Ramalingam C (2017) Nano-zirconia – evaluation of its antioxidant and anticancer activity. J Photochem Photobiol B Biol 170:125–133. doi:10.1016/j.jphotobiol.2017.04.004

    Article  CAS  Google Scholar 

  • Bali R, Siegele R, Harris AT (2010) Biogenic Pt uptake and nanoparticle formation in Medicago sativa and Brassica juncea. J Nanopart Res 12(8):3087–3095. doi:10.1007/s11051-010-9904-7

    Article  CAS  Google Scholar 

  • Barhoumi L, Oukarroum A, Taher LB, Smiri LS, Abdelmelek H, Dewez D (2015) Effects of superparamagnetic iron oxide nanoparticles on photosynthesis and growth of the aquatic plant Lemna gibba. Arch Environ Contam Toxicol 68(3):510–520. doi:10.1007/s00244-014-0092-9

    Article  CAS  PubMed  Google Scholar 

  • Barrena R, Casals E, Colan J, Font X, Sanchez A, Puntes V (2009) Evaluation of the ecotoxicology of model nanoparticles. Chemosphere 75:850–857. doi:10.1016/j.chemosphere.2009.01.078

    Article  CAS  PubMed  Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8. doi:10.1007/s004250050096

    Article  CAS  Google Scholar 

  • Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222. doi:10.1016/j.jhazmat.2012.10.025

    Article  CAS  PubMed  Google Scholar 

  • Begurn P, Ikhtiari R, Fugetsu B (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49(12):3907–3919. doi:10.1016/j.carbon.2011.05.029

    Article  CAS  Google Scholar 

  • Burke DJ, Pietrasiak N, Situ SF, Abenojar EC, Porche M, Kraj P, Lakliang Y, Samia ACS (2015) Iron Oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int J Mol Sci 16(10):23630–23650. doi:10.3390/ijms161023630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burklew CE, Ashlock J, Winfrey WB, Zhang B (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS One 7(5):e34783. doi:10.1371/journal.pone.0034783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabello-Hurtado F, Lozano-Baena MD, Neaime C, Burel A, Jeanne S, Pellen-Mussi P, Cordier S, Grasset F (2016) Studies on plant cell toxicity of luminescent silica nanoparticles (Cs2[Mo6Br14]@SiO2) and its constitutive components. J Nanopart Res 18(3). doi:10.1007/s11051-016-3381-6

  • Carocho M, Ferreira ICFR (2013) A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25. doi:10.1016/j.fct2012.09.021

    Article  CAS  PubMed  Google Scholar 

  • Carpita N et al (1979) Determination of the pore size of cell walls of living plants. Science 205:1144–1148

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Ratnikova TA, Stone MB, Lin S, Lard M, Huang G, Hudson JS, Ke PC (2010) Differential uptake of carbon nanoparticles by plant and mammalian cells. Small 6(5):612–617. doi:10.1002/smll.200901911

    Article  CAS  PubMed  Google Scholar 

  • Cherchi C, Chernenko T, Diem M, Gu AZ (2011) Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization. Environ Toxicol Chem 30(4):861–869. doi:10.1002/etc.445

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatin biosynthesis and function in heavymetal detoxification. Curr Opin Plant Biol 3(3):211–216

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thalianais deficient in γ-glutamylcysteine synthetase. Plant J 16(1):73–78. doi:10.1046/j.1365-313x.1998.00262.x

    Article  CAS  PubMed  Google Scholar 

  • Corredor E et al (2009) NP penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:45. doi:10.1186/1471-2229-9-54

  • Dasgupta N, Shivendu R, Shraddha M, Ashutosh K, Chidambaram R (2016) Fabrication of food grade Vitamin E nanoemulsion by low energy approach: characterization and its application. Int J Food Prop 19(3):700–708. doi:10.1080/10942912.2015.1042587

    Article  CAS  Google Scholar 

  • Dasgupta N, Shivendu R, Chidambaram R (2017) Applications of nanotechnology in agriculture and water quality management. Environ Chem Lett. doi:10.1007/s10311-017-0648-9

  • Dhankher OP, Li YJ, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20(11):1140–1145. doi:10.1038/nbt747

    Article  CAS  PubMed  Google Scholar 

  • Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16(11):582–589. doi:10.1016/j.tplants.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangon E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14(9):1. doi:Artn 112510.1007/S11051-012-1125-9

    Google Scholar 

  • Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver Nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47(2):1082–1090. doi:10.1021/es302973y

    Article  CAS  PubMed  Google Scholar 

  • Driouich A, Follet-Gueye ML, Vicre-Gibouin M, Hawes M (2013) Root border cells and secretions as critical elements in plant host defense. Curr Opin Plant Biol 16(4):489–495. doi:10.1016/j.pbi.2013.06.010

    Article  CAS  PubMed  Google Scholar 

  • Eichert T, Goldbach HE (2008) Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces – further evidence for a stomatal pathway. Physiol Plant 132(4):491–502. doi:10.1111/j.1399-3054.2007.01023.x

    Article  CAS  PubMed  Google Scholar 

  • Etxeberria E, Gonzalez P, Baroja-Fernandez E, Romero JP (2006) Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal Behav 1:196–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahn A (1982) Plant anatomy. Pergamon Press, Oxford/New York

    Google Scholar 

  • Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250:318–332. doi:10.1016/j.jhazmat.2013.01.063

    Article  PubMed  CAS  Google Scholar 

  • Faiyue B, Al-Azzawi MJ, Flowers TJ (2010) The role of lateral roots in bypass flow in rice (Oryza sativa L.) Plant Cell Environ 33(5):702–716. doi:10.1111/j.1365-3040.2009.02078.x

    CAS  PubMed  Google Scholar 

  • Fitzpatrick KL, Reid RJ (2009) The involvement of aquaglyceroporins in transport of boron in barley roots. Plant Cell Environ 32(10):1357–1365. doi:10.1111/j.1365-3040.2009.02003.x

    Article  CAS  PubMed  Google Scholar 

  • Fleischer A et al (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121:829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C (2002) Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun 294(1):116–119. doi: Pii S0006-291x(02)00445-X

    Google Scholar 

  • Freinbichler W, Colivicchi MA, Stefanini C, Bianchi L, Ballini C, Misini B, Weinberger P, Linert W, Vareslija D, Tipton KF, Della Corte L (2011) Highly reactive oxygen species: detection, formation, and possible functions. Cell Mol Life Sci 68(12):2067–2079. doi:10.1007/s00018-011-0682-x

  • Gao J, Xu G, Qian H, Liu P, Zhao P, Hu Y (2013) Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings. Environ Pollut 176:63–70. doi:10.1016/j.envpol.2013.01.027

    Article  CAS  PubMed  Google Scholar 

  • Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and growth of AuNnanoparticles inside live alfalfa plants. Nano Lett 2:397–401. doi:10.1021/nl015673+

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19(4):1357–1361. doi:10.1021/la020835i

    Article  CAS  Google Scholar 

  • Geisler-Lee J, Brooks M, Gerfen JR, Wang Q, Fotis C, Sparer A, Ma XM, Berg RH, Geisler M (2014) Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials(Basel) 4(2):301–318. doi:10.3390/nano4020301

    Article  CAS  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47(18):10645–10652. doi:10.1021/es402249b

    CAS  PubMed  Google Scholar 

  • Gould KS (2004) Nature’s Swiss army knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotechnol 5:314–320

    Article  Google Scholar 

  • Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci 86(18):6838–6842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54(393):2601–2613. doi:10.1093/jxb/erg303

    Article  CAS  PubMed  Google Scholar 

  • Harris AT, Bali R (2008) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res 10(4):691–695. doi:10.1007/s11051-007-9288-5

    Article  CAS  Google Scholar 

  • Hawes MC, Gunawardena U, Miyasaka S, Zhao XW (2000) The role of root border cells in plant defense. Trends Plant Sci 5(3):128–133. doi:10.1016/S1360-1385(00)01556-9

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Viezcas JA, Castillo-Michel H, Servin AD, Peralta-Videa JR, Gardea-Torresdey JL (2011) Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. Chem Eng J 170(2–3):346–352. doi:10.1016/j.cej.2010.12.021

    Article  CAS  PubMed  Google Scholar 

  • Hischemoller A et al (2009) In-vivo imaging of the uptake of upconversion nanoparticles by plant roots. J Biomed Nanotechnol 5:1–7

    Article  CAS  Google Scholar 

  • Hoecke VK, De Schamphelaere KAC, Ramirez-Garcia S, Van der Meeren P, Smagghe G, Janssen CR (2011) Influence of alumina coating on characteristics and effects of SiO2 nanoparticles in algal growth inhibition assays at various pH and organic matter contents. Environ Int 37(6):1118–1125. doi:10.1016/j.envint.2011.02.009

    Article  PubMed  CAS  Google Scholar 

  • Hopkins FG, Harris LJ (1929) On glutathione: a reinvestigation. J Biol Chem 84(1):269–320

    CAS  Google Scholar 

  • Hu Y, Li J, Ma L, Peng QL, Feng W, Zhang L, He SB, Yang F, Huang J, Li LJ (2010) High efficiency transport of quantum dots into plant roots with the aid of silwet L-77. Plant Physiol Biochem 48(8):703–709. doi:10.1016/j.plaphy.2010.04.001

    Article  CAS  PubMed  Google Scholar 

  • Hussain HI, Yi ZF, Rookes JE, Kong LXX, Cahill DM (2013) Mesoporous silica nanoparticles as a biomolecule delivery vehicle inplants. J Nanopart Res 15:1676

    Article  Google Scholar 

  • Jain A, Shivendu R, Nandita D, Chidambaram R (2016) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2016.1160363

  • Janardan S, Suman P, Ragul G, Anjaneyulu U, Shivendu R, Dgupta N, Ramalingam C, Sasikumar S, Vijayakrishna K, Sivaramakrishna A (2016) Assessment on antibacterial activity of nanosized silica derived from hypercoordinated silicon(IV) precursors. RSC Adv 6:66394–66406. doi:10.1039/C6RA12189F

    Article  CAS  Google Scholar 

  • Judy JD, Unrine JM, Bertsch PM (2011) Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol 45(2):776–781. doi:10.1021/es103031a

    Article  CAS  PubMed  Google Scholar 

  • Kadar E, Rooks P, Lakey C, White DA (2012) The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Sci Total Environ 439:8–17

    Article  CAS  PubMed  Google Scholar 

  • Kamat JP, Devasagayam TP, Priyadarsini KI, Mohan H (2000) Reactive oxygen species mediated membranedamage induced by fullerene derivatives and its possible biological implications. Toxicology 155:55–61

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li ZR, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth (Retracted article. See vol. 6, pg. 7541, 2012). ACS Nano 3(10):3221–3227. doi:10.1021/nn900887m

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135. doi:10.1021/nn204643g

    Article  CAS  PubMed  Google Scholar 

  • Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190(1–3):613–621. doi:10.1016/j.jhazmat.2011.03.095

    Article  CAS  PubMed  Google Scholar 

  • Kurepa J et al (2010) Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302. doi:10.1021/nl903518f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landa P, Vankova R, Andrlova J, Hodek J, Marsik P, Storchova H, White JC, Vanek T (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241:55–62. doi:10.1016/j.jhazmat.2012.08.059

    Article  PubMed  CAS  Google Scholar 

  • Larue C, Khodja H, Herlin-Boime N et al (2011) Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. J Phys 304(1): Article ID 012057

    Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S, Trcera N, Sorieul S, Cecillon L et al (2014) Fate of pristine TiO2 nanoparticles and aged paintcontaining TiO2 nanoparticles in lettuce crop after foliar exposure. J Hazard Mater 273:17–26

    Article  CAS  PubMed  Google Scholar 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity andbioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Nanomater Environ 27:1915–1921

    CAS  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis Thaliana. Environ Toxicol Chem 29(3):669–675. doi:10.1002/etc.58

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim S, Kim S, Lee I (2013a) Assessment of phytotoxicity of ZnO Nanoparticles on a medicinal plant, Fagopyrum esculentum. Environ Sci Pollut Res Int 20(2):848–854. doi:10.1007/s11356-012-1069-8

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Chung H, Kim S, Lee I (2013b) The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum Esculentum. Water Air Soil Pollut 224(9):1. doi:Artn 1668 10.1007/S11270-013-1668-0

    Google Scholar 

  • Lee SS, Song WS, Cho MJ, Puppala HL, Nguyen P, Zhu HG, Segatori L, Colvin VL (2013c) Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano 7(11):9693–9703. doi:10.1021/nn4026806

    Article  CAS  PubMed  Google Scholar 

  • Li YJ, Dankher OP, Carreira L, Smith AP, Meagher RB (2006) The shoot-specific expression of gamma-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol 141(1):288–298. doi:10.1104/pp.105.074815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin DH, Xing BS (2007) Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ Pollut 150(2):243–250. doi:10.1016/j.envpol.2007.01.016

    Article  CAS  PubMed  Google Scholar 

  • Lin SJ, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132. doi:10.1002/smll.200801556

    CAS  PubMed  Google Scholar 

  • Liu QL, Zhang XJ, Zhao YY, Lin JX, Shu CY, Wang CR, Fang XH (2013) Fullerene-induced increase of glycosyl residue on living plant cell wall. Environ Sci Technol 47(13):7490–7498. doi:10.1021/es4010224

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010a) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320. doi:10.1021/es903891g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010b) X-ray Absorption Spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58(6):3689–3693. doi:10.1021/jf904472e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovern SB, Klaper R (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C-60) nanoparticles. Environ Toxicol Chem 25(4):1132–1137. doi:10.1897/05-278r.1

    Article  CAS  PubMed  Google Scholar 

  • Lu PT, Cao JP, He SG, Liu JP, Li HM, Cheng GP, Ding YL, Joyce DC (2010) Nano-silver pulse treatments improve water relations of cut rose cv. Movie star flowers. Postharvest Biol Technol 57(3):196–202. doi:10.1016/j.postharvbio.2010.04.003

    Article  CAS  Google Scholar 

  • Ma YH, Kuang LL, He X, Bai W, Ding YY, Zhang ZY, Zhao YL, Chai ZF (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78(3):273–279. doi:10.1016/j.chemosphere.2009.10.050

    Article  CAS  PubMed  Google Scholar 

  • Ma CX, Chhikara S, Xing BS, Musante C, White JC, Dhankher OP (2013a) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1(7):768–778. doi:10.1021/sc400098h

    Article  CAS  Google Scholar 

  • Ma XM, Gurung A, Deng Y (2013b) Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci Total Environ 443:844–849. doi:10.1016/j.scitotenv.2012.11.073

    Article  CAS  PubMed  Google Scholar 

  • Maddinedi SB, Mandal BK, Patil SH, Andhalkar VV, Shivendu R, Nandita D (2017) Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. J Photochem Photobiol B Biol 166:252–258. doi:10.1016/j.jphotobiol.2016.12.008

    Article  CAS  Google Scholar 

  • McNear DH Jr (2013) The rhizosphere – roots, soil and everything in between. Nat Educ Knowl 4:1

    Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Schober Y, Rompp A, Ghassempour A, Spengler B (2014) Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicol Environ Saf 108:335–339. doi:10.1016/j.ecoenv.2014.07.013

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44(1):25–37. doi:10.1016/j.plaphy.2006.01.007

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410. doi:Pii S1360-1385(02)02312-9

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498. doi:10.1016/j.tplants.2004.08.009

    Article  CAS  PubMed  Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481. doi:10.1146/annurev.arplant.58.032806.103946

    Article  PubMed  CAS  Google Scholar 

  • Morales MI, Rico CM, Hernandez-Viezcas JA, Nunez JE, Barrios AC, Tafoya A, Flores-Marges JP, Peralta-Videa JR, Gardea-Torresdey JL (2013) Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J Agric Food Chem 61(26):6224–6230. doi:10.1021/jf401628v

    Article  CAS  PubMed  Google Scholar 

  • Moscatelli A, Ciampolini F, Rodighiero S, Onelli E, Cresti M, Santo N, Idilli A (2007) Distinct endocytic pathways identified in tobacco pollen tubes using charged nanogold. J Cell Sci 120(21):3804–3819. doi:10.1242/jcs.012138

    Article  CAS  PubMed  Google Scholar 

  • Mourato M, Reis R, Martins MLL (2012) Characterization of plant antioxidative system in response to abiotic stresses: a focus on heavy metal toxicity. In: Advances in Selected Plant Physiology Aspects

    Google Scholar 

  • Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao LJ, Gardea-Torresdey JL (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6(1):132–138. doi:10.1039/c3mt00064h

    Article  CAS  PubMed  Google Scholar 

  • Mura S, Seddaiu G, Bacchini F, Roggero PP, Greppi GF (2013) Advances of nanotechnology in agro-environmental studies. Ital J Agron 8(3):127–140. doi:ARTN e18 10.4081/ija.2013.e18

    Google Scholar 

  • Mushtaq YK (2011) Effect of nanoscale Fe3O4, TiO2 and carbon particles on cucumber seed germination. J Environ Sci Health A 46(14):1732–1735. doi:10.1080/10934529.2011.633403

    Article  CAS  Google Scholar 

  • Mustafa G, Sakata K, Hossain Z, Komatsu S (2015) Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. J Proteome 122:100–118. doi:10.1016/j.jprot.2015.03.030

    Article  CAS  Google Scholar 

  • Nadiminti PP, Dong YD, Sayer C, Hay P, Rookes JE, Boyd BJ, Cahill DM (2013) Nanostructured liquid crystalline particles as an alternative delivery vehicle for plant agrochemicals. ACS Appl Mater Interfaces 5(5):1818–1826. doi:10.1021/am303208t

    Article  CAS  PubMed  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386. doi:10.1007/s10646-008-0214-0

    Article  CAS  PubMed  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627. doi:10.1126/science.1114397

    Article  CAS  PubMed  Google Scholar 

  • Nielsen HD, Berry LS, Stone V, Burridge TR, Fernandes TF (2008) Interactions between carbon black nanoparticles and the brown algae Fucus serratus: Inhibition of fertilization and zygotic development. Nanotoxicology 2(2):88–97. doi:10.1080/17435390802109185

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49(1):249–279. doi:10.1146/annurev.arplant.49.1.249

    Article  CAS  PubMed  Google Scholar 

  • Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang CM, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39(5):1221–1230. doi:10.1021/es049190u

    Article  CAS  PubMed  Google Scholar 

  • Oberdorster E, Zhu SQ, Blickley TM, McClellan-Green P, Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C-60) on aquatic organisms. Carbon 44(6):1112–1120. doi:10.1016/j.carbon.2005.11.008

    Article  CAS  Google Scholar 

  • Onelli E, Prescianotto-Baschong C, Caccianiga M, Moscatelli A (2008) Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold. J Exp Bot 59(11):3051–3068. doi:10.1093/jxb/ern154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oukarroum A, Barhoumi L, Pirastru L, Dewez D (2013) Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ Toxicol Chem 32(4):902–907. doi:10.1002/etc.2131

    Article  CAS  PubMed  Google Scholar 

  • Panda KK, Acharya VMM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro 25(5):1097–1105. doi:10.1016/j.tiv.2011.03.008

    Article  CAS  PubMed  Google Scholar 

  • Parsons JG, Lopez ML, Gonzalez CM, Peralta-Videa JR, Gardea-Torresdey JL (2010) Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants. Environ Toxicol Chem 29(5):1146–1154. doi:10.1002/etc.146

    CAS  PubMed  Google Scholar 

  • Paulose B, Kandasamy S, Dhankher OP (2010) Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification. BMC Plant Biol 10:108. doi: Artn 108 10.1186/1471-2229-10-108

    Google Scholar 

  • Poborilova Z, Opatrilova R, Babula P (2013) Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ Exp Bot 91:1–11. doi:10.1016/j.envexpbot.2013.03.002

    Article  CAS  Google Scholar 

  • Rajeshwari SS, Chandrasekaran N, Mukherjee A (2016) Toxicity evaluation of gold nanoparticles using an Allium cepa bioassay. RSC Adv 6:24000–24009. doi:10.1039/C6RA04712B

    Article  CAS  Google Scholar 

  • Ranathunge K, Steudle E, Lafitte R (2005) Blockage of apoplastic bypassflow of water in rice roots by insoluble salt precipitates analogous to a Pfeffer cell. Plant Cell Environ 28:121–133. doi:10.1111/j.1365-3040.2004.01245.x

    Article  Google Scholar 

  • Ranjan S, Chidambaram R (2016) Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation. Environ Chem Lett 14(4):487–494. doi:10.1007/s10311-016-0586-y

    Article  CAS  Google Scholar 

  • Ranjan S, Nandita D, Srivastava P, Chidambaram R (2016) A spectroscopic study on interaction between bovine serum albumin and titanium dioxide nanoparticle synthesized from microwave-assisted hybrid chemical approach. J Photochem Photobiol B Biol 161:472–481. doi:10.1016/j.jphotobiol.2016.06.015

    Article  CAS  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498. doi:10.1021/jf104517j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rico CM, Morales MI, Mccreary R, Castillo-Michel H, Barrios AC, Hong J, Tafoya A, Lee WY, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2013a) Cerium Oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47(24):14110–14118. doi:10.1021/es4033887

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Hong J, Morales MI et al (2013b) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47:5635–5642. doi:10.1021/es401032m

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez E, Azevedo R, Fernandes P, Santos C (2011) Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a how cytometric and comet assay study in Pisum sativum. Chem Res Toxicol 24(7):1040–1047. doi:10.1021/tx2001465

    Article  CAS  PubMed  Google Scholar 

  • Sai KT, Mandal BK, Shivendu R, Nandita D (2017) Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J Photochem Photobiol B Biol 166:158–168. doi:10.1016/j.jphotobiol.2016.11.017

    Article  CAS  Google Scholar 

  • Samaj J (2012) Endocytosis in plants. Springer, Berlin/Heidelberg. doi:10.1007/978-3-642-32463-5

    Book  Google Scholar 

  • Sattelmacher B, Horst WJ (2007) The apoplast of higher plants: compartment of storage, transport and reactions – The significance of the apoplast for the mineral nutrition of higher plants. Springer, Dordrecht

    Google Scholar 

  • Schaller J, Brackhage C, Paasch S, Brunner E, Baucker E, Dudel EG (2013) Silica uptake from nanoparticles and silica condensation state in different tissues of Phragmites australis. Sci Total Environ 442:6–9. doi:10.1016/j.scitotenv.2012.10.016

    Article  CAS  PubMed  Google Scholar 

  • Schreiber L (2005) Polar paths of diffusion across plant cuticles: new evidence for an old hypothesis. Ann Bot-London 95(7):1069–1073. doi:10.1093/Aob/Mci122

    Article  Google Scholar 

  • Schreiber L (2010) Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci 15(10):546–553. doi:10.1016/j.tplants.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  • Schreiber L, Elshatshat S, Koch K, Lin JX, Santrucek J (2006) AgCl precipitates in isolated cuticular membranes reduce rates of cuticular transpiration. Planta 223:283–290

    Article  CAS  PubMed  Google Scholar 

  • Schwab F, Bucheli TD, Lukhele LP, Magrez A, Nowack B, Sigg L et al (2011) Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ Sci Technol 45:6136–6144. doi:10.1021/es200506b

    Article  CAS  PubMed  Google Scholar 

  • Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B, Zhao L, Nunez E, Peralta-Videa JR, Gardea-Torresdey JL (2013) Synchrotron verification of TiO2 ccumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transferfrom soil into the food chain. Environ Sci Technol 47(20):11592–11598. doi:10.1021/es403368j

    Article  CAS  PubMed  Google Scholar 

  • Shams G, Ranjbar M, Amiri A (2013) Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. negeen). J Nanopart Res 15(5):1. doi:Artn 1630 10.1007/S11051-013-1630-5

    Article  CAS  Google Scholar 

  • Shane MW, McCully ME, Canny MJ (2000) The vascular system of maize stems revisited: implications for water transport and xylem safety. Ann Bot(London) 86(2):245–258. doi:10.1006/anbo.2000.1171

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS et al (2012) Reactive oxygen species, oxidative damage,and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1. doi:10.1155/2012/217037

    Article  CAS  Google Scholar 

  • Shukla A, Dasgupta N, Shivendu R, Singh S, Chidambaram R (2017) Nanotechnology towards prevention of anemia and osteoporosis: from concept to market. Biotechnol Biotechnol Equip. doi:10.1080/13102818.2017.1335615

  • Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46(18):10247–10254. doi:10.1021/es300949f

    CAS  PubMed  Google Scholar 

  • Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersiconesculentum). Ecotoxicol Environ Saf 93:60–67. doi:10.1016/j.ecoenv.2013.03.033

    Article  CAS  PubMed  Google Scholar 

  • Speranza A, Crinelli R, Scoccianti V, Taddei AR, Iacobucci M, Bhattacharya P, Ke PC (2013) In vitro toxicity of silver nanoparticles to kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release. Environ Pollut 179:258–267. doi:10.1016/j.envpol.2013.04.021

    Article  CAS  PubMed  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479. doi:10.1021/es901695c

    Article  CAS  PubMed  Google Scholar 

  • Su MY, Liu HT, Liu C, Qu CX, Zheng L, Hong FS (2009) Promotion of nano-anatase TiO2 on the spectral responses and photochemical activities of D1/D2/Cyt b559 complex of spinach. Spectrochim Acta A 72(5):1112–1116. doi:10.1016/j.saa.2009.01.010

    Article  CAS  Google Scholar 

  • Suresh S, Karthikeyan S, Jayamoorthy K (2015) Effect of bulk and nano-Fe2O3 particles on peanut plant leaves studied by Fourier transform infrared spectral studies. J Adv Res 7:739. doi:10.1016/j.jare.2015.10.002

    Article  CAS  Google Scholar 

  • Tara Sabo-Attwood JMU, Stone JW, Murphy CJ, Ghoshroy S, Blom D, Bertsch PM, Newman LA (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6(4):353–360. doi:10.3109/17435390.2011.579631

    Article  PubMed  CAS  Google Scholar 

  • Taylor AF, Rylott EL, Anderson CWN, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One 9(4):e93793. doi:ARTN e9379310.1371/journal.pone.0093793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thorne ET, Young BM, Young GM, Stevenson JF, Labavitch JM, Matthews MA, Rost TL (2006) The structure of xylem vessels in grapevine (vitaceae) and a possible passive mechanism for the systemic spread of bacterial disease. Am J Bot 93(4):497–504. doi:10.3732/Ajb.93.4.497

    Article  PubMed  Google Scholar 

  • Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteome 71(4):391–411. doi:10.1016/j.jprot.2008.07.005

    Article  CAS  Google Scholar 

  • Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173–194. doi:10.1046/j.0016-8025.2001.00791.x

    Article  CAS  PubMed  Google Scholar 

  • Uzu G, Sobanska S, Sarret G, Munoz M, Dumat C (2010) Foliar lead uptake by Lettuce exposed to atmospheric fallouts. Environ Sci Technol 44(3):1036–1042. doi:10.1021/es902190u

    Article  CAS  PubMed  Google Scholar 

  • Van Nhan Le YR, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12(50):1–15. doi:10.1186/s12951-014-0050-8

    Google Scholar 

  • Vannini C, Domingo G, Onelli E, Prinsi B, Marsoni M, Espen L, Bracale M (2013) Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One 8(7):e68752. doi:ARTN e68752 10.1371/journal.pone.0068752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verano-Braga T, Miethling-Graff R, Wojdyla K, Rogowska-Wrzesinska A, Brewer JR, Erdmann H, Kjeldsen F (2014) Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics. ACS Nano 8(3):2161–2175. doi:10.1021/nn4050744

    Article  CAS  PubMed  Google Scholar 

  • Verneuil L, Silvestre J, Mouchet F, Flahaut E, Boutonnet JC, Bourdiol F, Bortolamiol T, Baque D, Gauthier L, Pinelli E (2015) Multi-walled carbon nanotubes, natural organic matter, and the benthic diatom Nitzschia palea: “a sticky story”. Nanotoxicology 9(2):219–229. doi:10.3109/17435390.2014.918202

    Article  CAS  PubMed  Google Scholar 

  • Walia N. Dasgupta N, Shivendu R, Chen L, Chidambaram R (2017) Fish Oil Based Vitamin D Nanoencapsulation by Ultrasonication and Bioaccessibility Analysis in Simulated Gastro-Intestinal Tract. Ultrason Sonochem 39:623–635. doi:10.1016/j.ultsonch.2017.05.021

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132(1):44–51. doi:10.1104/pp.102.019661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9(5):244–252. doi:10.1016/j.tplants.2004.03.006

    Article  CAS  PubMed  Google Scholar 

  • Wang HH, Kou XM, Pei ZG, Xiao JQ, Shan XQ, Xing BS (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5(1):30–42. doi:10.3109/17435390.2010.489206

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Ebbs SD, Chen YS, Ma XM (2013) Trans-generational impact of cerium oxide nanoparticles on tomato plants. Metallomics 5(6):753–759. doi:10.1039/c3mt00033h

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yang Y, Zhu HG, Braam J, Schnoor JL, Alvarez PJJ (2014) Uptake, translocation, and transformation of quantum dots with cationic versus anionic coatings by Populus deltoides x nigra Cuttings. Environ Sci Technol 48(12):6754–6762. doi:10.1021/es501425r

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Misawa S, Hiradate S, Osaki M (2008) Root mucilage enhances aluminum accumulation in Melastoma malabathricum, an aluminum accumulator. Plant Signal Behav 3:603–605

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan SH, Zhao L, Li H, Zhang Q, Tan JJ, Huang M, He SB, Li LJ (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater 246:110–118. doi:10.1016/j.jhazmat.2012.12.013

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158(2):122–132. doi:10.1016/j.toxlet.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  • Yang XJ, Baskin JM, Baskin CC, Huang ZY (2012) More than just a coating: ecological importance, taxonomic occurrence and phylogenetic relationships of seed coat mucilage. Perspect Plant Ecol Evol Syst 14:434–442. doi:10.1016/j.ppees.2012.09.002

    Article  Google Scholar 

  • Yanik F, Vardar F (2015) Toxic effects of Aluminum Oxide (Al2O3) nanoparticles on root growth and development in Triticum aestivum. Water Air Soil Pollut 226(9). doi:Artn 29610.1007/S11270-015-2566-4

  • Zhang ZY, He X, Zhang HF, Ma YH, Zhang P, Ding Zhang YY et al (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3:816–822. doi:10.1039/c1mt00049g

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Ma YH, Zhang ZY, He X, Guo Z, Tai RZ, Ding YY, Zhao YL, Chai ZF (2012) Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ Sci Technol 46(3):1834–1841. doi:10.1021/es2027295

    Article  CAS  PubMed  Google Scholar 

  • Zhao LJ, Peng B, Hernandez-Viezcas JA, Rico C, Sun YP, Peralta-Videa JR, Tang XL, Niu GH, Jin LX, Varela-Ramirez A, Zhang JY, Gardea-Torresdey JL (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6(11):9615–9622. doi:10.1021/nn302975u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu S, Oberdorster E, Haasch ML (2006) Toxicity of engineered nanoparticles (fullerene, C60) in two aquatic species, Daphania and fathead minnow. Mar Environ Res 62:S5–S9. doi:10.1016/j.marenvres.2006.04.059

    Article  CAS  PubMed  Google Scholar 

  • Zhu H et al (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Chang Y, Chen Y (2010) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78(3):209–215. doi:10.1016/j.chemosphere.2009.11.013

    Article  CAS  PubMed  Google Scholar 

  • Zhu ZJ, Wang HH, Yan B, Zheng H, Jiang Y, Miranda OR, Rotello VM, Xing BS, Vachet RW (2012) Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46(22):12391–12398. doi:10.1021/es301977w

    Article  CAS  PubMed  Google Scholar 

  • Zulfiqar A, Paulose B, Chhikara S, Dhankher OP (2011) Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica. Environ Pollut 159(10):3123–3128. doi:10.1016/j.envpol.2011.06.027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Funding agency UGC is duly acknowledged for providing the fellowship [22/12/2013(ii) EU-V)] to Mr. Atul Dev.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Karmakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dev, A., Srivastava, A.K., Karmakar, S. (2017). Uptake and Toxicity of Nanomaterials in Plants. In: Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanoscience in Food and Agriculture 5. Sustainable Agriculture Reviews, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-58496-6_7

Download citation

Publish with us

Policies and ethics