Skip to main content

Potential of Milk Proteins as Nanoencapsulation Materials in Food Industry

  • Chapter
  • First Online:

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 26))

Abstract

A number of synthetic polymers (e.g. polyacrylamide, polyamides, polyphenylesters and polyurethanes) have been used in biomedical and pharmaceutical sector (Reis et al. 2006). But these polymers cannot be used in food industry that require food grade that is generally regarded as safe ingredients. The toxicity is more likely to be associated with synthetic polymers. There have been some concerns about potential limitations on the patentability of nanotechnology, many more commentators have expressed the opposite concern that there are too many nanotechnology patents that will lead to an overlapping set of patent rights. There is also a need for regulatory framework capable of managing any risks associated with implementation of nanoparticles in food technology.

We reviewed that milk proteins possess a number of functional properties that make them important for conventional and novel dry delivery systems. The major advances of the past year in harnessing milk proteins for novel health-promoting delivery applications are mainly in nanosizing, conjugation, crosslinking and targeting. The major points are (1) Novel milk-protein nanoparticles were used for solubilizing and protecting hydrophobic nutraceuticals in clear systems, for targeting gastric tumors, utilizing the natural digestibility of caseins, (2) New cold-gelation based vehicles for probiotics or protein-drugs were introduced, based on different crosslinking agents, like rennet, transglutaminase, and genipin, (3) Casein hydrogels have a number of favorable properties like high hydrophobicity, good biocompatibility in oral delivery application, lack of toxicity and availability of reactive sites for chemical modifications, (4) Casein floating beads helps to increase the residence time of drugs in the stomach based on its emulsifying and bubble-forming properties, (5) Hydrophobically-modified blood serum albumin was introduced as a new-nanoencapsulator for hydrophobic drugs. In photodynamic cancer therapy blood serum albumin conjugated magnetic nanoparticles were used. In combination with lactoferrin, they can be successfully used in challenging targeting tasks, like crossing the blood-brain-barrier.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anema SG, de Kruif CG (2012) Lactoferrin binding to transglutaminase cross-linked casein micelles. Int Dairy J 26:83–87

    Article  CAS  Google Scholar 

  • Balaji S, Mandal BK, Shivendu R, Nandita D, Ramalingam C (2017) Nano-zirconia – evaluation of its antioxidant and anticancer activity. J Photochem Photobiol B Biol 170:125–133. doi:10.1016/j.jphotobiol.2017.04.004

    Article  CAS  Google Scholar 

  • Barros Fernandes V, Borgesa R, Botrela AA (2014) Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydr Polym 101:524–532

    Article  Google Scholar 

  • BCC Research, Nanobiotechnology (2011) Applications and Global Markets. Published: January Report Code: NAN050A

    Google Scholar 

  • Bedie GK, Turgoeon SL, Makhlouf J (2008) Formation of native whey protein isolate-low methoxyl pectin complexes as a matrix for hydrosoluble food ingredient entrapment in acidic foods. Food Hydrocoll 22:836–844

    Article  CAS  Google Scholar 

  • Betz M, Garcia-Gonzalez CA, Subrahmanyam RP, Smirnova I, Kulozik U (2012) Preparation of novel whey protein-based aerogels as drug carriers for life science applications. J Supercrit Fluids 72:111–119

    Article  CAS  Google Scholar 

  • Blanchard E, Zhu P, Schuck P (2013) Infant formula powders. In: Bhandari B, Bansal N, Zhang M, Schuck P (eds) Handbook of food powders: process and properties. Woodhead Publishing, Cambridge, pp 465–483

    Chapter  Google Scholar 

  • Bulgarelli E, Forni F, Bernabei MT (2000) Effect of matrix composition and process conditions on casein gelatin beads floating properties. Int J Phram 198:157–165

    Article  CAS  Google Scholar 

  • Chaudhry C, Castle L (2011) Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci Technol 22:595–603

    Article  CAS  Google Scholar 

  • Chen L, Subirade M (2008) Food-protein-derived materials and their use as carriers and delivery systems for active food components. In: Garti N (ed) Delivery and controlled release of bioactives in foods and nutraceuticals. Woodhead Publishing Ltd., Cambridge, pp 251–278

    Google Scholar 

  • Chen L, Remondetto GE, Subirade M (2006) Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol 17:272–283

    Article  CAS  Google Scholar 

  • Cornacchia L, Roos YH (2011) Stability of beta-carotene in protein-stabilized oil-in-water delivery systems. J Agric Food Chem 59:7013–7020

    Article  CAS  PubMed  Google Scholar 

  • Danino D, Livney YD, Ramon D, Portnoy I, Cogan U (2009) B-Casein assemblies for enrichment of food and beverages and methods for preparation thereof. Patent (WO⁄2009⁄101612

    Google Scholar 

  • Darder M (2007) Bionanocomposites: a new concept of ecological, bioinspired and functional hybrid materials. Adv Mater 19:1309–1319

    Article  CAS  Google Scholar 

  • Dasgupta N, Shivendu R, Shraddha M, Ashutosh K, Chidambaram R (2016) Fabrication of food grade Vitamin E nanoemulsion by low energy approach: characterization and its application. Int J Food Prop 19(3):700–708. doi:10.1080/10942912.2015.1042587

    Article  CAS  Google Scholar 

  • Dasgupta N, Shivendu R, Chidambaram R (2017) Applications of nanotechnology in agriculture and water quality management. Environ Chem Lett. doi:10.1007/s10311-017-0648-9

  • Diak OA, Bani-Jaber A, Amro B, Jones D, Andrews GP (2007) The manufacture and characterization of Casein films as novel tablet coatings. Food Bioprod Process 85:284–290

    Article  Google Scholar 

  • Diarrassouba F, Remondetto G, Liang L, Garrait G, Beyssac E, Subirade M (2013) Effects of gastrointestinal pH conditions on the stability of the b-lactoglobulin/vitamin D3 complex and on the solubility of vitamin D3. Food Res Int 52:515–521

    Article  CAS  Google Scholar 

  • Doherty SB, Gee VL, Ross RP, Stanton C, Fitzgerald GF, Brodkorb A (2011) Development and characterisation of whey protein micro-beads as potential matrices for probiotic protection. Food Hydrocoll 25:1604–1617

    Article  CAS  Google Scholar 

  • Doi E (1993) Gels and gelling of globular proteins. Trends Food Sci Technol 4(1):1–5

    Article  CAS  Google Scholar 

  • Elzoghby AO, El-Fotoh WS, Elgindy NA (2011) Casein based formulations as promising controlled release drug delivery systems. J Control Release 153(3):206–216

    Article  CAS  PubMed  Google Scholar 

  • Fang SC, Hsu CL, Lin HT, Yen GC (2010) Anticancer effects of flavonoid derivatives isolated from Millettia reticulata benth in sk-hep-1 human hepatocellular carcinoma cells. J Agric Food Chem 58(2):814–820. doi:10.1021/jf903216r

    Article  CAS  PubMed  Google Scholar 

  • FOE (Friends of the Earth) (2008) A summary of: out of the laboratory and on to our plates. Nanotechnology in Food & Agriculture http://midgetechnology.com/Documents/Nano%20Out%20of%20the%20Lab%20On%20To%20Our%20Plstes.pdf. Accessed 18 Jan 2017

  • Gibbs BF, Kermasha S, Alli I, Mulligan CN (1999) Encapsulation in the food industry: a review. Int J Food Sci Nutr 50:213–224

    Article  CAS  PubMed  Google Scholar 

  • Giroux HJ, Britten M (2011) Encapsulation of hydrophobic aroma in whey protein nanoparticles. J Microencapsul 28:337–343

    Article  CAS  PubMed  Google Scholar 

  • Gokmen V, Mogol BA, Lumaga RB, Fogliano V, Kaplun Z, Shimoni E (2011) Development of functional bread containing nanoencapsulated omega-3 fatty acids. J Food Eng 105:585–591

    Article  Google Scholar 

  • Gong J, Huo M, Zhou J, Zhang Y, Peng X, Yu D et al (2009) Synthesis, characterization, drug-loading capacity and safety of novel octyl modified serum albumin micelles. Int J Pharm 376:161–168

    Article  CAS  PubMed  Google Scholar 

  • Graveland-Bikker JF, Fritz G, Glatter O, de Kruif CG (2006) Growth and structure of a-lactalbumin nanotubes. J Appl Crystallograph 39(2):180–184

    Google Scholar 

  • Graveland-Bikkera JF, de Kruif CG (2006) Unique milk protein based nanotubes: food and nanotechnology meet. Trends Food Sci Technol 17:196–203

    Article  Google Scholar 

  • Gubbins MJ, Berry JD, Cindi R, Mogridge CJ, Yuan XY, Schmidt L, Nicolas B, Kabani A, Raymond S (2006) Production and characterization of neutralizing monoclonal antibodies that recognize an epitope in domain of Bacillus anthracis protective antigen FEMS. Immunol Med Microbiol 47:436–444

    Article  CAS  Google Scholar 

  • Guilherme M, Thomas T, Croguennec AF, Bouhallaba CS (2014) Milk proteins as encapsulation devices and delivery vehicles: applications and trends. Trends Food Sci Technol 37:5–20

    Article  Google Scholar 

  • Gulseren I, Fang Y, Corredig M (2012a) Whey protein nanoparticles prepared with desolvation with ethanol: characterization, thermal stability and interfacial behavior. Food Hydrocoll 29:258–264

    Article  CAS  Google Scholar 

  • Heidebach T, Forst P, Kulozik U (2009a) Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins. Food Hydrocoll 23:1670–1677

    Article  CAS  Google Scholar 

  • Heidebach T, Forst P, Kulozik U (2009b) Transglutaminaseinduced caseinate gelation for the microencapsulation of probiotic cells. Int Dairy J 19:77–84

    Article  CAS  Google Scholar 

  • Hemar Y, Cheng LJ, Oliver CM, Sanguansri L, Augustin M (2010) Encapsulation of resveratrol using water-in-oil-in-water double emulsions. Food Biophys 5:120–127

    Article  Google Scholar 

  • Hong GP, Surassmo S, Chun JY, Min SG, Choi MJ (2012) Influence of high hydrostatic pressure on the capsicum oleoresin encapsulated by globular protein. Int J Food Eng 8:16

    Google Scholar 

  • Huppertz T, de Kruif CG (2008) Structure and stability of nanogel particles prepared by internal cross-linking of casein micelles. Int Dairy J 18:556–565

    Article  CAS  Google Scholar 

  • Ipsen R, Otte J (2007) Self-assembly of partially hydrolyzed alactalbumin. Biotechnol Adv 25:602–607

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Shivendu R, Nandita D, Chidambaram R (2016) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2016.1160363

  • Jameson GB, Adams JJ, Creamer LK (2002) Flexibility, functionality and hydrophobicity of bovine β-Lactoglobulins. Int Dairy J 12:319–329

    Article  CAS  Google Scholar 

  • Janardan S, Suman P, Ragul G, Anjaneyulu U, Shivendu R, Dgupta N, Ramalingam C, Sasikumar S, Vijayakrishna K, Sivaramakrishna A (2016) Assessment on antibacterial activity of nanosized silica derived from hypercoordinated silicon(IV) precursors. RSC Adv 6:66394–66406. doi:10.1039/C6RA12189F

    Article  CAS  Google Scholar 

  • Jianzhong Ma XQ, Zhou J, Zhang J, Zhang L, Tang H, Chen L (2013) Synthesis and biological response of casein-based silica nano-composite film for drug delivery system. Colloids Surf B Biointerfaces 111:257–263

    Article  PubMed  Google Scholar 

  • Jimenez M, Garcia HS, Beristain CI (2008) Sensory evaluation of dairy products supplemented with microencapsulated conjugated linoleic acid (CLA). LWT 41:1047–1052

    Article  CAS  Google Scholar 

  • Kimpel F, Schmitt JJ (2015) Review: milk protens as nanocarrier systems for hydrophobic nutraceuticals. J Food Sci 11:R2361–R2366

    Article  Google Scholar 

  • Korhonen H (2003) Bioactive peptides: new challenges and opportunities for dairy industry. Aus J Dairy Technol 58:129–134

    CAS  Google Scholar 

  • Kuhn P, Weiche B, Sturm L, Sommer E, Drepper F, Warscheid B, Sourjik V, Koch HG (2011) The bacterial SRP receptor, SecA and the ribosome use overlapping binding sites on the SecY translocon. Traffic 12:563–578. doi:10.1111/j.1600-0854.2011.01167

    Article  CAS  PubMed  Google Scholar 

  • Le Maux S, Giblin L, Croguennec T, Bouhallab S, Brodkorb A (2012) Beta-lactoglobulin as a molecular carrier of linoleate: characterization and effects on intestinal epithelial cells in vitro. J Agric Food Chem 60:9476–9483

    Article  PubMed  Google Scholar 

  • Lewis DH (1990) In: Chasin M, Langer R (eds) Biodegradable polymers as drug delivery systems. Marcel Dekker, New York, pp 1–8

    Google Scholar 

  • Liang L, Leung Sok Line V, Remondetto GE, Subirade M (2010) In vitro release of a-tocopherol from emulsion-loaded blactoglobulin gels. Int Dairy J 20:176–181

    Article  CAS  Google Scholar 

  • Liang L, Tremblay-Hébert V, Subirade M (2011) Characterisation of the b-lactoglobulin/a-tocopherol complex and its impact on atocopherol stability. Food Chem 126:821–826

    Article  CAS  Google Scholar 

  • Lim ASL, Griffin C, Roos YR (2014) Stability and loss kinetics of lutein and b-carotene encapsulated in freeze-dried emulsions with layered interface and trehalose as glass former. Food Res Int 62:403–409

    Article  CAS  Google Scholar 

  • Livney YD (2010) Milk proteins as vehicles for bioactives. Curr Opin Colloid Interface Sci 15:73–83. doi:10.1016/j.cocis.2009.11.002

    Article  CAS  Google Scholar 

  • Loch JI, Bonarek P, Polit A, Riès D, Dziedzicka-Wasylewska M, Lewiński K (2013) Binding of 18-carbon unsaturated fatty acids to bovine β-lactoglobulin—structural and thermodynamic studies. Int J Biol Macromol 57:226–231

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Rubio A, Lagaron JM (2012) Whey protein capsules obtained through electrospraying for elasticity study based on atomic force microscopy. Langmuir 20:5079–5090

    Google Scholar 

  • Lux Research INC., (n.d.) supra note 84, at 201

    Google Scholar 

  • Ma W, Baron A, Guyot S, Bouhallab S, Zanchi D (2012) Kinetics of the formation of beta-casein/tannin mixed micelles. RSC Adv 2:3934–3941

    Article  CAS  Google Scholar 

  • Maddinedi SB, Mandal BK, Patil SH, Andhalkar VV, Shivendu R, Nandita D (2017) Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. J Photochem Photobiol B Biol 166:252–258. doi:10.1016/j.jphotobiol.2016.12.008

    Article  CAS  Google Scholar 

  • Matalanis A, Decker EA, DJ MC (2012) Inhibition of lipid oxidation by encapsulation of emulsion droplets within hydrogel microspheres. Food Chem 132:766–772

    Article  CAS  Google Scholar 

  • Matsui H, Porrata P, Douberly GE (2001) Protein tubule immobilization on self-assembled monolayers on Au substrates. Nano Lett 1(9):461–464

    Article  CAS  Google Scholar 

  • McClements DJ, Li Y (2010) Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components. Adv Colloid Interface Sci 159(2):213–228. doi:10.1016/j.cis.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  • Nanoforum, the European Nanotechnology Gateway (2006) Nanotechnology in agriculture and food. Report. Available online at: http://www.nanoforum

  • Otte J, Ipsen R, Bauer R, Bjerrum MJ, Waninge R (2005) Formation of amyloid-like fibrils upon limited proteolysis of bovine a-lactalbumin. Int Dairy J 15:219–229

    Article  CAS  Google Scholar 

  • Pan X, Yu S, Yao P, Shao Z (2007) Self-assembly of β-casein and lysozyme. J Colloid Interface Sci 316:405–412

    Article  CAS  PubMed  Google Scholar 

  • Panyam KD (2003) Peptides from milk proteins and their properties. Crit Rev Food Sci Nutr 43(2003):607–633

    PubMed  Google Scholar 

  • Qui Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339

    Article  Google Scholar 

  • Qureshi MA, Karthikeyan S, Karthikeyan P, Khan PA, Sudhir U, Mishra UK (2012) Application of nanotechnology in food and dairy processing: an overview. Pak J Food Sci 22:23–31

    Google Scholar 

  • Radha K, Thomas A, Sathian CT (2014) Application of nano technology in dairy industry prospects and challenges—a review. Indian J Dairy Sci 67(5):367–374

    Google Scholar 

  • Radmacher M (2002) Measuring the elastic properties of living cells by the atomic force microscope. Methods Cell Biol 68:67–90

    Article  PubMed  Google Scholar 

  • Ranjan S, Chidambaram R (2016) Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation. Environ Chem Lett 14(4):487–494. doi:10.1007/s10311-016-0586-y

    Article  CAS  Google Scholar 

  • Ranjan S, Nandita D, Srivastava P, Chidambaram R (2016) A spectroscopic study on interaction between bovine serum albumin and titanium dioxide nanoparticle synthesized from microwave-assisted hybrid chemical approach. J Photochem Photobiol B Biol 161:472–481. doi:10.1016/j.jphotobiol.2016.06.015

    Article  CAS  Google Scholar 

  • Raouche S, Naille S, Dobenesque M, Bot A, Jumas JC, Cuq JL et al (2009) Iron fortification of skim milk: minerals and Fe-57 Mossbauer study. Int Dairy J 19:56–63

    Article  CAS  Google Scholar 

  • Raviv U, Needleman DJ, Li Y, Miller HP, Wilson L, Safinya CR (2005) Cationic liposome–microtubule complexes: pathways to the formation of two-state lipid–protein nanotubes with open or closed ends. Proc Natl Acad Sci USA 102(32):11167–11172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2(1):8–21

    Article  CAS  Google Scholar 

  • Relkin P, Shukat R (2012) Food protein aggregates as vitamin matrix carriers, impact of processing conditions. Food Chem 134:2141–2148

    Article  CAS  PubMed  Google Scholar 

  • Sahlan M, Pramadewi I (2012) Nanoencapsulation of the flavonoids isolated from Phaleria macrocarpa leaf by casein micelle. Int J Pharm Bio Sci 3:472–478

    CAS  Google Scholar 

  • Sai KT, Mandal BK, Shivendu R, Nandita D (2017) Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J Photochem Photobiol B Biol 166:158–168. doi:10.1016/j.jphotobiol.2016.11.017

    Article  Google Scholar 

  • Saiz-Abajo MJ, Gonzalez-Ferrero C, Moreno-Ruiz A, Romo-Hualde A, Gonzalez-Navarro CJ (2013) Thermal protection of beta-carotene in re-assembled casein micelles during different processing technologies applied in food industry. Food Chem 138:1581–1587

    Article  CAS  PubMed  Google Scholar 

  • Salminen H, Herrmann K, Weiss J (2013) Oil-in-water emulsions as a delivery system for n-3 fatty acids in meat products. Meat Sci 93:659–667

    Article  CAS  PubMed  Google Scholar 

  • Sangeetha J, Philip J (2012) The interaction, stability and response to an external stimulus of iron oxide nanoparticle-casein nanocomplexes. Colloids Surf A Physicochem Eng Asp 406:52–60

    Article  CAS  Google Scholar 

  • Shapira A, Davidson I, Avni N, Assaraf YG, Livney YD (2012) Beta-casein nanoparticle-based oral drug delivery system for potential treatment of gastric carcinoma: stability, targetactivated release and cytotoxicity. Eur J Pharm Biopharm 80:298–305

    Article  CAS  PubMed  Google Scholar 

  • Shukla A, Dasgupta N, Shivendu R, Singh S, Chidambaram R (2017) Nanotechnology towards prevention of anemia and osteoporosis: from concept to market. Biotechnol Biotechnol Equip. doi:10.1080/13102818.2017.1335615

  • Shpigelman A, Cohen Y, Livney YD (2012) Thermally-induced b-lactoglobuline EGCG nanovehicles: loading, stability, sensory and digestive-release study. Food Hydrocoll 29:57–67

    Article  CAS  Google Scholar 

  • Song F, Zhang L, Yang C, Yan L (2009) Genipin-crosslinked casein hydrogels for controlled drug delivery. Int J Pharm 373:41–47. doi:10.1016/j.ijpharm.2009.02.005

    Article  CAS  PubMed  Google Scholar 

  • Srinivas PR, Philbert M, Vu TQ, Huang Q, Kokini JL, Saos E, Ross SA (2010) Anotechnology research: applications in nutritional sciences. J Nutr 140(1):119–124. http://doi.org/10.3945/jn.109.115048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson A, Boland M, Singh H (2009) Milk proteins: from expression to food. Academic Press, New York, pp 321–340

    Google Scholar 

  • Tippetts M, Martini S, Brothersen C, McMahon DJ (2012) Fortification of cheese with vitamin D3 using dairy protein emulsions as delivery systems. J Dairy Sci 95:4768–4774

    Article  CAS  PubMed  Google Scholar 

  • Topel A (2004) Chemie und Physik der Milch, vol 3. Behr’s, Hamburg

    Google Scholar 

  • Umesha SS, Sai Manohar R, Indiramma AR, Akshitha S, Akhilender Naidu K (2015) Enrichment of biscuits with microencapsulated omega-3 fatty acid (Alpha-linolenic acid) rich Garden cress (Lepidium sativum) seed oil: Physical, sensory and storage quality characteristics of biscuits. LWT-Food Sci Technol 62(1):654–661

    Article  CAS  Google Scholar 

  • Walia N, Dasgupta N, Shivendu R, Chen L, Chidambaram R (2017) Fish oil based Vitamin D nanoencapsulation by ultrasonication and bioaccessibility analysis in simulated gastro-intestinal tract. Ultrason Sonochem 39:623–635. doi:10.1016/j.ultsonch.2017.05.021

    Article  CAS  Google Scholar 

  • Walstra P, Jenness R, Badings HT (1984) Dairy chemistry and physics. Wiley, New York

    Google Scholar 

  • Wang Q et al (1997a) Binding of retinoids to beta-lactoglobulin isolated by bioselective adsorption. J Dairy Sci 80(6):1047–1053

    Article  CAS  PubMed  Google Scholar 

  • Wang Q et al (1997b) Binding of vitamin D and cholesterol to beta-lactoglobulin. J Dairy Sci 80(6):1054–1059

    Article  CAS  PubMed  Google Scholar 

  • Wesley MC, Nelson RR, John PW (2000) Protecting their intellectual assets: appropriability conditions and why U.S. manufacturing firms Patent (or Not). Natl Bureau Econ Res 7552:2000

    Google Scholar 

  • Zimet P, Livney YD (2009) Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for u-3 polyunsaturated fatty acids. Food Hydrocoll 23:1120–1126

    Article  CAS  Google Scholar 

  • Zimet P, Rosenberg D, Livney YD (2011) Re-assembled casein micelles and casein nanoparticles as nano-vehicles for u-3 polyunsaturated fatty acids. Food Hydrocoll 25:1270–1276

    Article  CAS  Google Scholar 

  • Zorilla R, Liang L, Remondetto G, Subirade M (2011) Interaction of epigallocatechin-3-gallate with b-lactoglobulin: molecular characterization and biological implication. Dairy Sci Technol 91:629–644

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Poonia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Poonia, A. (2017). Potential of Milk Proteins as Nanoencapsulation Materials in Food Industry. In: Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanoscience in Food and Agriculture 5. Sustainable Agriculture Reviews, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-58496-6_6

Download citation

Publish with us

Policies and ethics