Skip to main content

Nanoremediation for Sustainable Crop Production

  • Chapter
  • First Online:
Nanoscience in Food and Agriculture 5

Abstract

Nanoremediation is a promising strategy to controlling pollution. Nanoremediation involves the use of nanomaterials and plants, named phyto-nanoremediation, animals, named zoo-nanoremediation and microbes, named microbial nanoremediation. Here we review environmental pollution, crop protection and nanoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas MA, Iftikhar H, Gul A (2015) Effect of industrial pollution on crop productivity. In: Hakeem KR (ed) Crop production and global environmental issues. Springer, Cham, pp 123–151. doi:10.1007/978-3-319-23162-4_5

    Chapter  Google Scholar 

  • Abhilash PC, Dubey RK (2015) Root system engineering: prospects and promises. Trends Plant Sci 20:1360–1385

    Google Scholar 

  • Abhilash PC, Dubey RK, Tripathi V, Srivastava P, Verma JP, Singh HB (2013a) Remediation and management of POPs-contaminated soils in a warming climate: challenges and perspectives. Environ Sci Pollut Res 20:5879–5885

    Article  CAS  Google Scholar 

  • Abhilash PC, Singh B, Srivastava P, Schaeffer A, Singh N (2013b) Remediation of lindane by Jatropha Curcas L: utilization of multipurpose species for rhizoremediation. Biomass Bioenergy 51:189–193

    Article  CAS  Google Scholar 

  • Abhilash PC, Tripathi V, Adil Edrisi S, Kant Dubey R, Bakshi M, Dubey PK, Singh HB, Ebbs SD (2016) Sustainability of crop production from polluted lands. Energ Ecol Environ 1(1):54–65. doi:10.1007/s40974-016-0007-x

    Article  Google Scholar 

  • Adams MD, Kanaroglou PS (2016) Mapping real-time air pollution health risk for environmental management: combining mobile and stationary air pollution monitoring with neural network models. J Environ Manag 168:133–141. http://dx.doi.org/10.1016/j.jenvman.2015.12.012

  • Adki VS, Pe Jadhav J, Bapat VA (2014) At the cross roads of environmental pollutants and phytoremediation: a promising bio remedial approach. J Plant Biochem Biotechnol 23(2):125–140. doi:10.1007/s13562-013-0250-6

    Article  CAS  Google Scholar 

  • Agnello AC, Bagard M, van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563–564:693–703

    Article  PubMed  CAS  Google Scholar 

  • Ahmad T, Ahmad K, Alam M (2016) Sustainable management of water treatment sludge through 3‘R’ concept. J Clean Prod 124:1–13. http://dx.doi.org/10.1016/j.jclepro.2016.02.073

    Article  Google Scholar 

  • Akhtar F, Lodhi SA, Khan SS, Sarwar F (2016) Incorporating permaculture and strategic management for sustainable ecological resource management. J Environ Manag 179:31–37. http://dx.doi.org/10.1016/j.jenvman.2016.04.051

    Article  Google Scholar 

  • Alkaya E, Demirer GN (2015) Water recycling and reuse in soft drink/beverage industry: a case study for sustainable industrial water management in Turkey. Resour Conserv Recycl 104:172–180. http://dx.doi.org/10.1016/j.resconrec.2015.08.011

    Article  Google Scholar 

  • Al-Rousan S, Al-Taani AA, Rashdan M (2016) Effects of pollution on the geochemical properties of marine sediments across the fringing reef of Aqaba, Red Sea. Mar Pollut Bull 110:546–554. http://dx.doi.org/10.1016/j.marpolbul.2016.05.038

  • Andreotti F, Mucha AP, Caetano C, Rodrigues P, Gomes CR, Almeida CMR (2015) Interactions between salt marsh plants and Cu nanoparticles– effects on metal uptake and phytoremediation processes. Ecotoxicol Environ Saf 120:303–309

    Article  CAS  PubMed  Google Scholar 

  • Araújo R, Meira Castro AC, Fiúz A (2015) The use of nanoparticles in soil and water remediation processes. Materials Today: Proceedings 2(1):315–320. doi:10.1016/j.matpr.2015.04.055

    Article  Google Scholar 

  • Awasthi AK, Zeng X, Li J (2016) Environmental pollution of electronic waste recycling in India: a critical review. Environ Pollut 211:259–270

    Article  CAS  PubMed  Google Scholar 

  • Azarbad H, van Straalen NM, Laskowski R, Nikiel K, Röling WFM, Niklinska M (2016) Susceptibility to additional stressors in metal-tolerant soil microbial communities from two pollution gradients. Appl Soil Ecol 98:233–242. http://dx.doi.org/10.1016/j.apsoil.2015.10.020

    Article  Google Scholar 

  • Balaji S, Mandal BK, Shivendu R, Nandita D, Ramalingam C (2017) Nano-zirconia – evaluation of its antioxidant and anticancer activity. J Photochem Photobiol B Biol 170:125–133. doi:10.1016/j.jphotobiol.2017.04.004

    Article  CAS  Google Scholar 

  • Babin N, Mullendore ND, Prokopy LS (2016) Using social criteria to select watersheds for non-point source agricultural pollution abatement projects. Land Use Policy 55:327–333. http://dx.doi.org/10.1016/j.landusepol.2015.06.021

    Article  Google Scholar 

  • Barbosa B, Boléo S, Sidella S, Costa J, Duarte MP, Mendes B, Cosentino SL, Fernando AL (2015) Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. Bioenergy Res 8:1500–1511. doi:10.1007/s12155-015-9688-9

    Article  CAS  Google Scholar 

  • Baruah S, Dutta J (2009) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7:191–204. doi:10.1007/s10311-009-0228-8

    Article  CAS  Google Scholar 

  • Bauddh K, Singh K, Singh RP (2016) Ricinus communis L. a value added crop for remediation of cadmium contaminated soil. Bull Environ Contam Toxicol 96:265–269. doi:10.1007/s00128-015-1669-3

    Article  CAS  PubMed  Google Scholar 

  • Belal E, El-Ramady H (2016) Nanoparticles in water, soils and agriculture. In: Ranjan S et al (eds) Nanoscience in food and agriculture 2, Sustainable agriculture reviews 21. Springer, Heidelberg. doi:10.1007/978-3-319-39306-3_10

    Google Scholar 

  • Bian R, Li L, Bao D, Zheng J, Zhang X, Zheng J, Liu X, Cheng K, Pan G (2016) Cd immobilization in a contaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar. Environ Sci Pollut Res 23:10028–10036. doi:10.1007/s11356-016-6214-3

    Article  CAS  Google Scholar 

  • Bonanno G, Cirelli GL, Toscano A, Giudice RL, Pavone P (2013) Heavy metal content in ash of energy crops growing in sewage contaminated natural wetlands: potential applications in agriculture and forestry? Sci Total Environ 452–453:349–354

    Article  PubMed  CAS  Google Scholar 

  • Bora T, Dutta J (2014) Applications of nanotechnology in wastewater treatment-a review. J Nanosci Nanotechnol 14(1):613–626

    Article  CAS  PubMed  Google Scholar 

  • Bordeleau S, Asselin H, Mazerolle MJ, Imbeau L (2016) Is it still safe to eat traditional food? Addressing traditional food safety concerns in aboriginal communities. Sci Total Environ 565:529–538

    Article  CAS  PubMed  Google Scholar 

  • Bourgeois E, Dequiedt S, Lelie’vre M, van Oort F, Lamy I, Ranjard L, Maron PA (2015) Miscanthus bioenergy crop stimulates nutrient-cycler bacteria and fungi in wastewater-contaminated agricultural soil. Environ Chem Lett 13:503–511. doi:10.1007/s10311-015-0532-4

    Article  CAS  Google Scholar 

  • Brambilla G, Abate V, Battacone G, De Filippis SP, Esposito M, Esposito V, Miniero R (2016) Potential impact on food safety and food security from persistent organic pollutants in top soil improvers on Mediterranean pasture. Sci Total Environ 543:581–590

    Article  CAS  PubMed  Google Scholar 

  • Bu H, Zhang Y, Meng W, Song X (2016) Effects of land-use patterns on in-stream nitrogen in a highly-polluted river basin in Northeast China. Sci Total Environ 553:232–242

    Article  CAS  PubMed  Google Scholar 

  • Caballero-Guzman A, Nowack B (2016) A critical review of engineered nanomaterial release data: are current data useful for material flow modeling? Environ Pollut 213:502–517

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Yue W, Xu L, Yang Z, Rong Q (2016) Sustainable urban water resources management considering life-cycle environmental impacts of water utilization under uncertainty. Resour Conserv Recycl 108:21–40. http://dx.doi.org/10.1016/j.resconrec.2016.01.008

  • Campos-Herrera R, Martín JAR, Escuer M, García-González MT, Duncan LW, Gutiérrez C (2016) Entomopathogenic nematode food webs in an ancient, mining pollution gradient in Spain. Sci Total Environ 572:312–323

    Article  CAS  PubMed  Google Scholar 

  • Capaldi Arruda SCC, Silva ALD, Galazzi RM, Azevedo RA, Arruda MAZ (2015) Review nanoparticles applied to plant science: a review. Talanta 131:693–705. http://dx.doi.org/10.1016/j.talanta.2014.08.050

    Article  CAS  Google Scholar 

  • Caraballo MA, Macías F, Nieto JM, Ayora C (2016) Long term fluctuations of groundwater mine pollution in a sulfide mining district with dry Mediterranean climate: implications for water resources management and remediation. Sci Total Environ 539:427–435

    Article  CAS  PubMed  Google Scholar 

  • Carugno M, Consonni D, Randi G, Catelan D, Grisotto L, Bertazzi PA, Biggeri A, Baccini M (2016) Air pollution exposure, cause-specific deaths and hospitalizations in a highly polluted Italian region. Environ Res 147:415–424. http://dx.doi.org/10.1016/j.envres.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  • Chandra R (2015) Advances in biodegradation and bioremediation of industrial wastes. CRC Press of Taylor and Francis Group, Boca Raton. ISBN-10: 1498700543, ISBN-13: 978-1498700542

    Google Scholar 

  • Chen Z, Barros CP, Gil-Alana LA (2016a) The persistence of air pollution in four mega-cities of China. Habitat Int 56:103–108. http://dx.doi.org/10.1016/j.habitatint.2016.05.004

  • Chen M, Qin X, Zeng G, Li J (2016b) Impacts of human activity modes and climate on heavy metal “spread” in groundwater are biased. Chemosphere 152:439–445. http://dx.doi.org/10.1016/j.chemosphere.2016.03.046

  • Chen H, Teng Y, Lu S, Wang Y, Wu J, Wang J (2016c) Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China. Chemosphere 144:1002–1011

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Wang G, Zhong Y, Shen Z (2016d) Evaluating the impacts of soil data on hydrological and nonpoint source pollution prediction. Sci Total Environ 563–564:19–28. http://dx.doi.org/10.1016/j.scitotenv.2016.04.107

  • Cheng S-F, Huang C-Y, Chen K-L, Lin S-C, Lin Y-C (2015) Exploring the benefits of growing bioenergy crops to activate lead-contaminated agricultural land: a case study on sweet potatoes. Environ Monit Assess 187:144. doi:10.1007/s10661-014-4247-y

    Article  PubMed  CAS  Google Scholar 

  • Choi J, Norwood H, Seo S, Sirsat SA, Neal J (2016) Evaluation of food safety related behaviors of retail and food service employees while handling fresh and fresh-cut leafy greens. Food Control 67:199–208

    Article  Google Scholar 

  • Chung I-M, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G (2016) Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett 11:40. doi:10.1186/s11671-016-1257-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clifford A, Lang L, Chen R, Anstey KJ, Seaton A (2016) Exposure to air pollution and cognitive functioning across the life course a systematic literature review. Environ Res 147:383–398

    Article  CAS  PubMed  Google Scholar 

  • Cutillas-Barreiro L, Pérez-Rodríguez P, Gómez-Armesto A, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E, Núñez-Delgado A, Arias-Estévez M, Nóvoa-Muñoz JC (2016) Lithological and land-use based assessment of heavy metal pollution in soils surrounding a cement plant in SW Europe. Sci Total Environ 562:179–190. http://dx.doi.org/10.1016/j.scitotenv.2016.03.198

  • Dandage K, Badia-Melis R, Ruiz-García L (2017) Indian perspective in food traceability: a review. Food Control 71:217–227

    Article  Google Scholar 

  • Dary M, Chamber-Pe’rez MA, Palomares AJ, Pajuelo E (2010) In situ phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400

    Article  Google Scholar 

  • Dasgupta N, Shivendu R, Shraddha M, Ashutosh K, Chidambaram R (2016) Fabrication of food grade Vitamin E nanoemulsion by low energy approach: characterization and its application. Int J Food Prop 19(3):700–708. doi:10.1080/10942912.2015.1042587

    Article  CAS  Google Scholar 

  • Dasgupta N, Shivendu R, Chidambaram R (2017) Applications of nanotechnology in agriculture and water quality management. Environ Chem Lett. doi:10.1007/s10311-017-0648-9

  • Devi Th B, Ahmaruzzaman M (2016) Bio-inspired sustainable and green synthesis of plasmonic Ag/AgCl nanoparticles for enhanced degradation of organic compound from aqueous phase. Environ Sci Pollut Res 23:17702–17714. doi:10.1007/s11356-016-6945-1

    Article  CAS  Google Scholar 

  • Diego J, Cebada P (2016) Mining corporations and air pollution science before the age of ecology. Ecol Econ 123:77–83

    Article  Google Scholar 

  • Ditta A, Arshad M, Ibrahim M (2015) Nanoparticles in sustainable agricultural crop production: applications and perspectives. In: Siddiqui MH et al (eds) Nanotechnology and plant sciences. Springer, Cham, pp 55–75. doi:10.1007/978-3-319-14502-0_4

    Google Scholar 

  • Domínguez MT, Alegre JM, Madejón P, Madejón E, Burgos P, Cabrera F, Marañón T, Murillo JM (2016) River banks and channels as hotspots of soil pollution after large-scale remediation of a river basin. Geoderma 261:133–140. http://dx.doi.org/10.1016/j.geoderma.2015.07.008

    Article  CAS  Google Scholar 

  • Dong H, Gao Y, Sinko PJ, Wu Z, Xu J, Jia L (2016) The nanotechnology race between China and the United States. NanoToday 11(1):7–12. doi:10.1016/j.nantod.2016.02.001

    Article  CAS  Google Scholar 

  • Donia N, Bahgat M (2016) Water quality management for Lake Mariout. Ain Shams Eng J 7(2):527–541

    Article  Google Scholar 

  • Dunbar WS (2016) Biotechnology and the mine of tomorrow. Trends in Biotechnology 35:79–89. (In Press)

    Article  PubMed  CAS  Google Scholar 

  • Ebenstein A, Fan M, Greenstone M, He G, Yin P, Zhou M (2015) Growth, pollution, and life expectancy: China from 1991–2012. Am Econ Rev 105:226–231

    Article  Google Scholar 

  • Edrisi SA, Abhilash PC (2016) Exploring marginal and degraded lands for biomass and bioenergy production: an Indian scenario. Renew Sust Energ Rev 54:1537–1551

    Article  Google Scholar 

  • Edrisi SA, Dubey RK, Tripathi V et al (2015) Jatropha curcas L.: a crucified plant waiting for resurgence. Renew Sust Energ Rev 41:855–862

    Article  Google Scholar 

  • Effendi H (2016) River water quality preliminary rapid assessment using pollution index. Procedia Environmental Sciences 33:562–567. doi:10.1016/j.proenv.2016.03.108

    Article  CAS  Google Scholar 

  • El Ghorab HK, Shalaby HA (2016) Eco and green cities as new approaches for planning and developing cities in Egypt. Alex Eng J 55:495–503. http://dx.doi.org/10.1016/j.aej.2015.12.018

    Article  Google Scholar 

  • Elliot AJ, Smith S, Dobney A, Thornes J, Smith GE, Vardoulakis S (2016) Monitoring the effect of air pollution episodes on health care consultations and ambulance call-outs in England during March/April 2014: a retrospective observational analysis. Environ Pollut 214:903–911. http://dx.doi.org/10.1016/j.envpol.2016.04.026

    Article  CAS  PubMed  Google Scholar 

  • El-Ramady H, Abdalla N, Alshaal T, Elhenawy AS, Shams MS, Faizy SE-DA, Belal EB, Shehata SA, Ragab MI, Amer MM, Fari M, Sztrik A, Prokisch J, Selmar D, Schnug E, Pilon-Smits EAH, El-Marsafawy SM, Domokos-Szabolcsy E (2015a) Giant reed for selenium phytoremediation under changing climate. Environ Chem Lett 13(4):359–380. doi:10.1007/s10311-015-0523-5

    Article  CAS  Google Scholar 

  • El-Ramady H, Abdalla N, Alshaal T, Fári M, Prokisch J, Pilon-Smits EAH, Domokos-Szabolcsy É (2015b) Selenium phytoremediation by giant reed. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Environmental chemistry for a sustainable world, Hydrogen production and remediation of carbon and pollutants, vol 6. Springer, NewYork, pp 133–198. doi:10.1007/978-3-319-19375-5_4

    Google Scholar 

  • El-Temsah YS, Joner EJ (2013) Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. Chemosphere 92:131–137. http://dx.doi.org/10.1016/j.chemosphere.2013.02.039

    Article  CAS  PubMed  Google Scholar 

  • El-Temsah YS, Sevcu A, Bobcikova K, Cernik M, Joner EJ (2016) DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere 144:2221–2228. http://dx.doi.org/10.1016/j.chemosphere.2015.10.122

    Article  CAS  PubMed  Google Scholar 

  • Estarlich M, Ballester F, Davdand P, Llop S, Esplugues A, Fernández-Somoano A, Lertxundi A, Guxens M, Basterrechea M, Tardón A, Sunyer J, Iñiguez C (2016) Exposure to ambient air pollution during pregnancy and preterm birth: a Spanish multicenter birth cohort study. Environ Res 147:50–58. http://dx.doi.org/10.1016/j.envres.2016.01.037

    Article  CAS  PubMed  Google Scholar 

  • Evangelou MWH, Papazoglou EG, Robinson BH, Schulin R (2015) Phytomanagement: phytoremediation and the production of biomass for economic revenue on contaminated land. In: Ansari AA et al (eds) Phytoremediation: management of environmental contaminants, vol 1. Springer, Cham, pp 115–132. doi:10.1007/978-3-319-10395-2_9

    Google Scholar 

  • Fajardo C, Gil-Díaz M, Costa G, Alonso J, Guerrero AM, Nande M, Lobo MC, Martín M (2015) Residual impact of aged nZVI on heavy metal-polluted soils. Sci Total Environ 535:79–84. http://dx.doi.org/10.1016/j.scitotenv.2015.03.067

    Article  CAS  PubMed  Google Scholar 

  • Fayiga AO, Saha UK (2016) Soil pollution at outdoor shooting ranges: health effects, bioavailability and best management practices. Environ Pollut 216:135–145. http://dx.doi.org/10.1016/j.envpol.2016.05.062

    Article  CAS  PubMed  Google Scholar 

  • França FCSS, Albuuerque AMA, Almeida AC, Silveira PB, Filho CA, Hazin CA, Honorato EV (2017) Heavy metals deposited in the culture of lettuce (Lactuca sativa L.) by the influence of vehicular traffic in Pernambuco, Brazil. Food Chem 215:171–176

    Article  PubMed  CAS  Google Scholar 

  • Fraser E, Legwegoh A, Krishna KC, CoDyre M, Dias G, Hazen S, Johnson R, Martin R, Ohbe L (2017) Biotechnology or organic? Extensive or intensive? Global or local? A critical review of potential pathways to resolve the global food crisis. Trends Food Sci Technol 48:78–87

    Article  CAS  Google Scholar 

  • Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234

    Article  CAS  PubMed  Google Scholar 

  • Ghenaatian HR, Baei MT, Hashemian S (2013) Zn12O12 nano-cage as a promising adsorbent for CS2 capture. Superlattice Microst 58:198–204. doi:10.1016/j.spmi.2013.03.006

    Article  CAS  Google Scholar 

  • Ghorbanzade T, Jafari SM, Akhavan S, Hadavi R (2017) Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chem 216:146–152

    Article  CAS  PubMed  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803. doi:10.1016/j.biotechadv.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  • Gifford S, Dunstan RH, O’Connor W, Koller CE, MacFarlane GR (2006) Aquatic zooremediation: deploying animals to remediate contaminated aquatic environments. Trends Biotechnol 25:60–65

    Article  PubMed  CAS  Google Scholar 

  • Gil-Díaz M, Diez-Pascual S, Gonzalez A, Alonso J, Rodríguez-Valdes E, Gallego JR, Lobo MC (2016a) A nanoremediation strategy for the recovery of an as-polluted soil. Chemosphere 149:137–145. http://dx.doi.org/10.1016/j.chemosphere.2016.01.106

    Article  PubMed  CAS  Google Scholar 

  • Gil-Díaz M, Gonzalez A, Alonso J, Lobo MC (2016b) Evaluation of the stability of a nanoremediation strategy using barley plants. J Environ Manag 165:150–158. http://dx.doi.org/10.1016/j.jenvman.2015.09.032

    Article  CAS  Google Scholar 

  • Gillies G, Mackenzie K, Kopinke F-D, Georgi A (2016) Fluorescence labelling as tool for zeolite particle tracking in nanoremediation approaches. Sci Total Environ 550:820–826. http://dx.doi.org/10.1016/j.scitotenv.2016.01.009

    Article  CAS  PubMed  Google Scholar 

  • Gioda A, Ventura LMB, Ramos MB, Silva MPR (2016) Half century monitoring air pollution in a megacity: a case study of Rio de Janeiro. Water Air Soil Pollut 227:86. doi:10.1007/s11270-016-2780-8

    Article  CAS  Google Scholar 

  • Giovanis E (2015) Relationship between recycling rate and air pollution: waste management in the state of Massachusetts. Waste Manag 40:192–203. http://dx.doi.org/10.1016/j.wasman.2015.03.006

    Article  CAS  PubMed  Google Scholar 

  • Gomes HI, Fan G, Mateus EP, Dias-Ferreira C, Ribeiro AB (2014) Assessment of combined electro–nanoremediation of molinate contaminated soil. Sci Total Environ 493:178–184. http://dx.doi.org/10.1016/j.scitotenv.2014.05.112

    Article  CAS  PubMed  Google Scholar 

  • Gomes HI, Fan G, Ottosen LM, Dias-Ferreira C, Ribeiro AB (2016) Nanoremediation coupled to electrokinetics for PCB removal from soil. In: Ribeiro AB et al (eds) Electrokinetics across disciplines and continents. Springer, Cham, pp 331–350. doi:10.1007/978-3-319-20179-5_17

    Chapter  Google Scholar 

  • Gong S, Wang X, Yang Y, Bai L (2016) Knowledge of food safety and handling in households: a survey of food handlers in mainland China. Food Control 64:45–53

    Article  Google Scholar 

  • Greenstone M, Hanna R (2014) Environmental regulations, air and water pollution, and infant mortality in India. Am Econ Rev 104:3038–3072

    Article  Google Scholar 

  • Guan X, Sun Y, Qin H, Li J, Lo IM, He D, Dong H (2015) The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014). Water Res 75:224–248

    Article  CAS  PubMed  Google Scholar 

  • Günther M, Hellmann T (2017) International environmental agreements for local and global pollution. J Environ Econ Manag 81:38–58

    Article  Google Scholar 

  • Hamza RA, Iorhemen OT, Tay JH (2016) Occurrence, impacts and removal of emerging substances of concern from wastewater. Environmental Technology & Innovation 5:161–175. http://dx.doi.org/10.1016/j.eti.2016.02.003

    Article  Google Scholar 

  • Hang MYLP, Martinez-Hernandez E, Leach M, Yang A (2016) Designing integrated local production systems: a study on the food-energy-water nexus. J Clean Prod 135:1065–1084

    Article  Google Scholar 

  • Haukijärvi V, Lundén J (2017) Does waiving preventive food control inspections in Finland weaken the prerequisites for safe food handling in restaurants? Food Control 71:187–192

    Article  Google Scholar 

  • He G, Fan M, Zhou M (2016) The effect of air pollution on mortality in China: evidence from the 2008 Beijing Olympic games. J Environ Econ Manag 79:18–39. http://dx.doi.org/10.1016/j.jeem.2016.04.004

    Article  Google Scholar 

  • Hjortebjerg D, Andersen AMN, Ketzel M, Pedersen M, Raaschou-Nielsen O, Sørensen M (2016) Associations between maternal exposure to air pollution and traffic noise and newborn’s size at birth: a cohort study. Environ Int 95:1–7

    Article  CAS  PubMed  Google Scholar 

  • Houben D, Evrard L, Sonnet P (2013) Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.) Biomass Bioenergy 57:196–204

    Article  CAS  Google Scholar 

  • Huang T (2016) Water pollution and water quality control of selected chinese reservoir basins. In: The handbook of environmental chemistry series, vol 38. Springer, Cham. doi:10.1007/978-3-319-20391-1

    Google Scholar 

  • Huber C, Preis M, Harvey PJ, Grosse S, Letzel T, Schroder P (2016) Emerging pollutants and plants e metabolic activation of diclofenac by peroxidases. Chemosphere 146:435–441

    Article  CAS  PubMed  Google Scholar 

  • Hur M, Kim Y, Song HR, Kim JM, Im Choi Y, Yi H (2011) Effect of genetically modified poplars on soil microbial communities during the phytoremediation of waste mine tailings. Appl Environ Microbiol 77:7611–7619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussein AK (2016) Applications of nanotechnology to improve the performance of solar collectors – recent advances and overview. Renew Sust Energ Rev 62:767–792. doi:10.1016/j.rser.2016.04.050

    Article  Google Scholar 

  • Ibrahim RK, Hayyan M, AlSaadi MA, Hayyan A, Ibrahim S (2016) Environmental application of nanotechnology: air, soil, and water. Environ Sci Pollut Res Int 23:13754–13788. doi:10.1007/s11356-016-6457-z

    Article  CAS  PubMed  Google Scholar 

  • Ingle AP, Seabra AB, Duran N, Rai M (2014) Nanoremediation: a new and emerging technology for the removal of toxic contaminant from environment. In: Das S (ed) Microbial biodegradation and bioremediation, Elsevier Inc., pp 233–250. http://dx.doi.org/10.1016/B978-0-12-800021-2.00009-1

  • Irshad M, Ahmad S, Pervez A, Inoue M (2014) Phytoaccumulation of heavy metals in natural plants thriving on wastewater effluent at Hattar industrial estate, Pakistan. Int J Phytoremediation 17:154–158

    Article  CAS  Google Scholar 

  • Ismail A, Riaz M, Akhtar S, Ismail T, Amir M, Zafar-ul-Hye M (2014) Heavy metals in vegetables and respective soils irrigated by canal, municipal waste and tube well water. Food Addit Contam Part B 7:213–219

    Article  CAS  Google Scholar 

  • Jacobsen BH, Hansen AL (2016) Economic gains from targeted measures related to non-point pollution in agriculture based on detailed nitrate reduction maps. Sci Total Environ 556:264–275

    Article  CAS  PubMed  Google Scholar 

  • Jain R, Jordan N, Schild D, van Hullebusch ED, Weiss S, Franzen C, Farges F, Hübner R, Lens PNL (2015) Adsorption of zinc by biogenic elemental selenium nanoparticles. Chem Eng J 260:855–863. http://dx.doi.org/10.1016/j.cej.2014.09.057

    Article  CAS  Google Scholar 

  • Jain R, Dominic D, Jordan N, Rene ER, Weiss S, van Hullebusch ED, Hubner R, Lens PNL (2016) Higher Cd adsorption on biogenic elemental selenium nanoparticles. Environ Chem Lett 14:381–386. doi:10.1007/s10311-016-0560-8

    Article  CAS  Google Scholar 

  • Jain A, Shivendu R, Nandita D, Chidambaram R (2016) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2016.1160363

  • Janardan S, Suman P, Ragul G, Anjaneyulu U, Shivendu R, Dgupta N, Ramalingam C, Sasikumar S, Vijayakrishna K, Sivaramakrishna A (2016) Assessment on antibacterial activity of nanosized silica derived from hypercoordinated silicon(IV) precursors. RSC Adv 6:66394–66406. doi:10.1039/C6RA12189F

    Article  CAS  Google Scholar 

  • Jezierska-Thöle A, Rudnicki R, Kluba M (2016) Development of energy crops cultivation for biomass production in Poland. Renew Sust Energ Rev 62:534–545

    Article  Google Scholar 

  • Ji X, Liu S, Huang J, Bocharnikova E, Matichenkov V (2016) Monosilicic acid potential in phytoremediation of the contaminated areas. Chemosphere 157:132–136

    Article  CAS  PubMed  Google Scholar 

  • Kapusta P, Sobczyk Ł (2015) Effects of heavy metal pollution from mining and smelting on enchytraeid communities under different land management and soil conditions. Sci Total Environ 536:517–526. http://dx.doi.org/10.1016/j.scitotenv.2015.07.086

    Article  CAS  PubMed  Google Scholar 

  • Kar S, Rathore VS, Champati ray PK, Sharma R, Swain SK (2016) Classification of river water pollution using Hyperion data. J Hydrol 537:221–233. http://dx.doi.org/10.1016/j.jhydrol.2016.03.047

    Article  CAS  Google Scholar 

  • Kenessov B, Koziel JA, Bakaikina NV, Orazbayeva D (2016) Perspectives and challenges of on-site quantification of organic pollutants in soils using solid-phase microextraction. Trends Anal Chem 85:111–122. http://dx.doi.org/10.1016/j.trac.2016.04.007

    Article  CAS  Google Scholar 

  • Khalil M, El-Gharabawy S (2016) Evaluation of mobile metals in sediments of Burullus Lagoon, Egypt. Mar Pollut Bull 109:655–660. http://dx.doi.org/10.1016/j.marpolbul.2016.04.065

    Article  CAS  PubMed  Google Scholar 

  • Kim KE, Cho D, Park HJ (2016) Air pollution and skin diseases: adverse effects of airborne particulate matter on various skin diseases. Life Sci 152:126–134. http://dx.doi.org/10.1016/j.lfs.2016.03.039

    Article  CAS  PubMed  Google Scholar 

  • Klausbruckner C, Annegarn H, Henneman LRF, Rafaj P (2016) A policy review of synergies and trade-offs in south African climate change mitigation and air pollution control strategies. Environ Sci Pol 57:70–78. http://dx.doi.org/10.1016/j.envsci.2015.12.001

    Article  Google Scholar 

  • Knox A, Mykhaylova N, Evans GJ, Lee CJ, Karney B, Brook JR (2013) The expanding scope of air pollution monitoring can facilitate sustainable development. Sci Total Environ 448:189–196. http://dx.doi.org/10.1016/j.scitotenv.2012.07.096

    Article  CAS  PubMed  Google Scholar 

  • Kouddane N, Mouhir L, Fekhaoui M, Elabidi A, Benaakame R (2016) Monitoring air pollution at Mohammedia (Morocco): Pb, Cd and Zn in the blood of pigeons (Columba livia). Ecotoxicology 25:720–726. doi:10.1007/s10646-016-1631-0

    Article  CAS  PubMed  Google Scholar 

  • Kovacs H, Szemmelveisz K (2017) Disposal options for polluted plants grown on heavy metal contaminated brown field lands– a review. Chemosphere 166:8–20

    Article  CAS  PubMed  Google Scholar 

  • Kubátová P, Hejcman M, Száková J, Vondráčková S, Tlustoš P (2016) Effects of sewage sludge application on biomass production and concentrations of Cd, Pb and Zn in shoots of Salix and Populus clones: improvement of phytoremediation efficiency in contaminated soils. Bioenergy Res 9:809–819. doi:10.1007/s12155-016-9727-1

    Article  CAS  Google Scholar 

  • Kucukvar M, Samadi H (2015) Linking national food production to global supply chain impacts for the energy-climate challenge: the cases of the EU-27 and Turkey. J Clean Prod 108(Part A):395–408

    Article  Google Scholar 

  • Kumar S, Ahlawat W, Bhanjana G, Heydarifard S, Nazhad MM, Dilbaghi N (2014) Nanotechnology-based water treatment strategies. J Nanosci Nanotechnol 14(2):1838–1858

    Article  CAS  PubMed  Google Scholar 

  • Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R (2016) In-situ remediation approaches for the management of contaminated sites: a comprehensive overview. In: de Voogt P (ed) Reviews of Environmental Contamination and Toxicology, Vol 236, DOI: 10.1007/978-3-319-20013-2_1, Springer, Cham, pp 1 – 115

  • Lal K, Minhas PS, Chaturvedi RK, Yadav RK (2008) Extraction of cadmium and tolerance of three annual cut flowers on Cd contaminated soils. Bioresour Technol 99:1006–1011

    Article  CAS  PubMed  Google Scholar 

  • Laña I, Del Ser J, Padró A, Vélez M, Casanova-Mateo C (2016) The role of local urban traffic and meteorological conditions in air pollution: a data-based case study in Madrid, Spain. Atmos Environ 145:424–438

    Article  CAS  Google Scholar 

  • Laurent O, Hu J, Li L, Kleeman MJ, Bartell SM, Cockburn M, Escobedo L, Wu J (2016) Low birth weight and air pollution in California: which sources and components drive the risk? Environ Int 92–93:471–477. http://dx.doi.org/10.1016/j.envint.2016.04.034

    Article  PubMed  CAS  Google Scholar 

  • Lei K, Giubilato E, Critto A, Pan H, Lin C (2016) Contamination and human health risk of lead in soils around lead/zinc smelting areas in China. Environ Sci Pollut Res. doi:10.1007/s11356-016-6473-z

    Google Scholar 

  • Liao G, Wu Q, Feng R, Guo J, Wang R, Xu Y, Ding Y, Fan Z, Mo L (2016a) Efficiency evaluation for remediating paddy soil contaminated with cadmium and arsenic using water management, variety screening and foliage dressing technologies. J Environ Manag 170:116–122. http://dx.doi.org/10.1016/j.jenvman.2016.01.008

    Article  CAS  Google Scholar 

  • Liao C, Xu W, Lu G, Deng F, Liang X, Guo C, Dang Z (2016b) Biosurfactant-enhanced phytoremediation of soils contaminated by crude oil using maize (Zea mays L). Ecol Eng 92:10–17

    Article  Google Scholar 

  • Li Y, Li P, Yua H, Bian Y (2016a) Recent advances (2010–2015) in studies of cerium oxide nanoparticles’ health effects. Environ Toxicol Pharmacol 44:25–29

    Article  PubMed  CAS  Google Scholar 

  • Li A, Lin R, Lin C, He B, Zheng T, Lu L, Cao Y (2016b) An environment-friendly and multi-functional absorbent from chitosan for organic pollutants and heavy metal ion. Carbohydr Polym 148:272–280

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Tian S, Zhao X, Xie W, Gong Y, Zhao D (2015) Application of stabilized nanoparticles for in situ remediation of metal-contaminated soil and groundwater: a critical review. Curr Pollut Rep 1(4):280–291

    Article  Google Scholar 

  • Liu L-Y, Ma W-L, Jia H-L, Zhang Z-F, Song W-W, Li Y-F (2016) Research on persistent organic pollutants in China on a national scale: 10 years after the enforcement of the Stockholm Convention. Environmental Pollution 217:70–81 http://dx.doi.org/10.1016/j.envpol.2015.12.056

  • Lodeiro C, Capelo JL, Oliveira E, Nuñez C (2016) Pollutant toxic ions and molecules: a global pollution problem: trends in detection and protection. Environ Sci Pollut Res. doi:10.1007/s11356-016-6685-2

    Google Scholar 

  • Louie SM, Tilton RD, Lowry GV (2016) Critical review: impacts of macromolecular coatings on critical physicochemical processes controlling environmental fate of nanomaterials. Environ Sci Nano 3:283–310

    Article  CAS  Google Scholar 

  • Lu Y, Song S, Wang R, Liu Z, Meng J, Sweetman AJ, Jenkins A, Ferrier RC, Li H, Luo W, Wang T (2015) Impacts of soil and water pollution on food safety and health risks in China. Environ Int 77:5–15

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Deng Q, Li Y, Sundell J, Norbäck D (2016) Outdoor air pollution, meteorological conditions and indoor factors in dwellings in relation to sick building syndrome (SBS) among adults in China. Sci Total Environ 560–561:186–196. http://dx.doi.org/10.1016/j.scitotenv.2016.04.033

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Qi S, Gu XWS, Wang J, Xie X (2016) Evaluation of the phytoremediation effect and environmental risk in remediation processes under different cultivation systems. Journal of Cleaner Production, Volume 119:25–31

    Article  CAS  Google Scholar 

  • Lyubimova T, Lepikhin A, Parshakova Y, Tiunov A (2016) The risk of river pollution due to washout from contaminated floodplain water bodies during periods of high magnitude floods. J Hydrol 534:579–589. http://dx.doi.org/10.1016/j.jhydrol.2016.01.030

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25. doi:10.1016/j.jenvman.2016.02.047

    Article  CAS  Google Scholar 

  • Maddinedi SB, Mandal BK, Patil SH, Andhalkar VV, Shivendu R, Nandita D (2017) Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. J Photochem Photobiol B Biol 166:252–258. doi:10.1016/j.jphotobiol.2016.12.008

    Article  CAS  Google Scholar 

  • Magalhães WLE, Zanoni PRS, Helm CV, Lazzarotto M, Satyanarayana KG (2017) Nanotechnology applied to improve functionality in food. In: Grumezescu AM (ed) Nutrient delivery a volume in nanotechnology in the Agri-food industry. Academic Press, Boston, pp 177–219

    Google Scholar 

  • Mallampati SR, Mitoma Y, Okuda T, Sakita S, Kakeda M (2013) Total immobilization of soil heavy metals with nano-Fe/Ca/CaO dispersion mixtures. Environ Chem Lett 11:119–125

    Article  CAS  Google Scholar 

  • McCrink-Goode M (2014) Pollution: a global threat. Environment International 162–170. Doi:10.1016/j.envint.2014.03.023

  • Meers E, Van Slycken S, Adriaensen K et al (2010) The use of bioenergy crops (Zea mays) for “phytoattenuation” of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78:35–41

    Article  CAS  PubMed  Google Scholar 

  • Meister R, Rajani MS, Ruzicka D, Schachtman DP (2014) Challenges of modifying root traits in crops for agriculture. Trends Plant Sci 19:779–788

    Article  CAS  PubMed  Google Scholar 

  • Mehndiratta P, Jain A, Srivastava S, Gupta N (2013) Environmental pollution and nanotechnology. Environ Pollut 2(2):49–58. http://dx.doi.org/10.5539/ep.v2n2p49

    CAS  Google Scholar 

  • Mitton FM, Gonzalez M, Monserrat JM, Miglioranza KSB (2016) Potential use of edible crops in the phytoremediation of endosulfan residues in soil. Chemosphere 148:300–306

    Google Scholar 

  • Mudiyanselage CMR, Karunasena HCP, Gu YT, Guan L, Senadeera W (2017) Novel trends in numerical modelling of plant food tissues and their morphological changes during drying – a review. J Food Eng 194:24–39

    Article  Google Scholar 

  • Mustafa G, Komatsu S (2016) Toxicity of heavy metals and metal-containing nanoparticles on plants. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1864(8):932–944

    Article  CAS  Google Scholar 

  • Nakagami K, Kubota J, Setiawan BI (2016) Sustainable water management: new perspectives, design, and practices. Springer, Singapore

    Book  Google Scholar 

  • National Nanotechnology Initiative (2009) What is nanotechnology? Available: http://www.nano.gov/html/facts/whatisNano.html (Accessed 19.04.14)

  • Nazeer S, Ali Z, Malik RN (2016) Water quality assessment of river Soan (Pakistan) and source apportionment of pollution sources through receptor modeling. Arch Environ Contam Toxicol. doi:10.1007/s00244-016-0272-x

    PubMed  Google Scholar 

  • Ng CFS, Stickley A, Konishi S, Watanabe C (2016) Ambient air pollution and suicide in Tokyo, 2001–2011. J Affect Disord 201:194–202. http://dx.doi.org/10.1016/j.jad.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  • Nishiwaki J, Asagi N, Komatsuzaki M, Mizoguchi M, Noborio K (2016) Effect of added organic matter on soil fertility after stripping-off Cs-contaminated top soil at Iitate village in Fukushima prefecture. Paddy Water Environ. doi:10.1007/s10333-016-0524-4

    Google Scholar 

  • Noguera-Oviedo K, Aga DS (2016) Lessons learned from more than two decades of research on emerging contaminants in the environment. J Hazard Mater 316:242–251

    Article  CAS  PubMed  Google Scholar 

  • Oiamo TH, Johnson M, Tang K, Luginaah IN (2015) Assessing traffic and industrial contributions to ambient nitrogen dioxide and volatile organic compounds in a low pollution urban environment. Sci Total Environ 529:149–157. http://dx.doi.org/10.1016/j.scitotenv.2015.05.032

    Article  CAS  PubMed  Google Scholar 

  • Ouyang X, Guo F (2016) Paradigms of mangroves in treatment of anthropogenic wastewater pollution. Sci Total Environ 544:971–979. http://dx.doi.org/10.1016/j.scitotenv.2015.12.013

    Article  CAS  PubMed  Google Scholar 

  • Ouyang W, Huang W, Wei P, Hao F, Yu Y (2016a) Optimization of typical diffuse herbicide pollution control by soil amendment configurations under four levels of rainfall intensities. J Environ Manag 175:1–8. http://dx.doi.org/10.1016/j.jenvman.2016.03.026

    Article  CAS  Google Scholar 

  • Ouyang W, Jiao W, Li X, Giubilato E, Critto A (2016b) Long-term agricultural non-point source pollution loading dynamics and correlation with outlet sediment geochemistry. J Hydrol 540:379–385

    Article  CAS  Google Scholar 

  • Pan L, Yao E, Yang Y (2016) Impact analysis of traffic-related air pollution based on real-time traffic and basic meteorological information. J Environ Manag 183(Part 3):510–520

    Article  CAS  Google Scholar 

  • Pandey VC, Bajpai O, Singh N (2016a) Energy crops in sustainable phytoremediation. Renew Sust Energ Rev 54:58–73

    Article  Google Scholar 

  • Pandey S, Giri K, Kumar R, Mishra G, Raja Rishi R (2016b) Nanopesticides: opportunities in crop protection and associated environmental risks. Proc Natl Acad Sci, India, Sect B Biol Sci. doi:10.1007/s40011-016-0791-2

    Google Scholar 

  • Pantoja LDM, do Nascimento RF, de Nunes AB, A (2016) Investigation of fungal volatile organic compounds in hospital air. Atmospheric Pollution Research. http://dx.doi.org/10.1016/j.apr.2016.02.011

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles: the next generation technology for sustainable agriculture. In: Singh DP et al (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 289–300. doi:10.1007/978-81-322-2644-4_182

    Chapter  Google Scholar 

  • Parelho C, Rodrigues AS, Barreto MC, Ferreira NGC, Garcia P (2016) Assessing microbial activities in metal contaminated agricultural volcanic soils – an integrative approach. Ecotoxicol Environ Saf 129:242–249

    Article  CAS  PubMed  Google Scholar 

  • Paschalidou A, Tsatiris M, Kitikidou K (2016) Energy crops for biofuel production or for food? – SWOT analysis (case study: Greece). Renew Energy 93:636–647

    Article  Google Scholar 

  • Patil SS, Shedbalkar UU, Truskewycz A, Chopade BA, Ball AS (2016) Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environmental Technology & Innovation 5:10–21. http://dx.doi.org/10.1016/j.eti.2015.11.001

    Article  Google Scholar 

  • Patton AP, Laumbach R, Ohman-Strickland P, Black K, Alimokhtari S, Lioy PJ, Kipen HM (2016) Scripted drives: a robust protocol for generating exposures to traffic-related air pollution. Atmos Environ 143:290–299

    Article  CAS  Google Scholar 

  • Peeters K, Lespes G, Zuliani T, Scancar J, Milacic R (2016) The fate of iron nanoparticles in environmental waters treated with nanoscale zero-valent iron, FeONPs and Fe3O4NPs. Water Res 94:315e327. http://dx.doi.org/10.1016/j.watres.2016.03.004

    Article  CAS  Google Scholar 

  • Peterson JM (2017) Water–energy–food nexus—commonalities and differences in the United States and Europe. In: Jadwiga R, Ziolkowska, Jeffrey M, Peterson (eds) Competition for water resources. Elsevier Inc, pp 252–258

    Google Scholar 

  • Pinault L, Crouse D, Jerrett M, Brauer M, Tjepkema M (2016) Spatial associations between socioeconomic groups and NO2 air pollution exposure within three large Canadian cities. Environ Res 147:373–382. http://dx.doi.org/10.1016/j.envres.2016.02.033

    Article  CAS  PubMed  Google Scholar 

  • Prasad MNV (2015) Phytoremediation crops and biofuels. In: Lichtfouse E (ed) Sustainable agriculture reviews 17. Springer, Cham, pp 159–261. doi:10.1007/978-3-319-16742-8_7

    Chapter  Google Scholar 

  • Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946

    Article  CAS  PubMed  Google Scholar 

  • Rai PK (2016) Impacts of particulate matter pollution on plants: implications for environmental biomonitoring. Ecotoxicol Environ Saf 129:120–136. http://dx.doi.org/10.1016/j.ecoenv.2016.03.012

    Article  CAS  PubMed  Google Scholar 

  • Rajan R, Chandran K, Harper SL, Soon-Il Y, Thangavel Kalaichelvan P (2015) Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Ind Crop Prod 70:356–373

    Article  CAS  Google Scholar 

  • Ranjan S, Chidambaram R (2016) Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation. Environ Chem Lett 14(4):487–494. doi:10.1007/s10311-016-0586-y

    Article  CAS  Google Scholar 

  • Ranjan S, Nandita D, Srivastava P, Chidambaram R (2016) A spectroscopic study on interaction between bovine serum albumin and titanium dioxide nanoparticle synthesized from microwave-assisted hybrid chemical approach. J Photochem Photobiol B Biol 161:472–481. doi:10.1016/j.jphotobiol.2016.06.015

    Article  CAS  Google Scholar 

  • Rede D, Santos LHMLM, Ramos S, Oliva-Teles F, Antão C, Sousa SR, Delerue-Matos C (2016) Ecotoxicological impact of two soil remediation treatments in Lactuca sativa seeds. Chemosphere 159:193–198

    Article  CAS  PubMed  Google Scholar 

  • Rocco C, Duro I, Di Rosa S, Fagnano M, Fiorentino N, Vetromile A, Adamo P (2016) Composite vs. discrete soil sampling in assessing soil pollution of agricultural sites affected by solid waste disposal. J Geochem Explor 170:30–38

    Article  CAS  Google Scholar 

  • Rodríguez-Seijo A, Lago-Vila M, Andrade ML, Vega FA (2016) Pb pollution in soils from a trap shooting range and the phytoremediation ability of Agrostis capillaris L. Environ Sci Pollut Res. doi:10.1007/s11356-015-5340-7

    Google Scholar 

  • Romero-Freire A, Sierra Aragón M, Martínez Garzón FJ, Martín Peinado FJ (2016) Is soil basal respiration a good indicator of soil pollution? Geoderma 263:132–139. http://dx.doi.org/10.1016/j.geoderma.2015.09.006

    Article  CAS  Google Scholar 

  • Ruiz-Felix MN, Kelly WJ, Balsamo RA, Satrio JA (2016) Evaluation of sugars and bio-oil production using lead contaminated switch grass feedstock. Waste Biomass Valor. doi:10.1007/s12649-016-9508-2

    Google Scholar 

  • Ruttens A, Boulet J, Weyens N (2011) Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils. Int J Phytoremediation 13:94–207

    Article  Google Scholar 

  • Saha JK, Rao AS, Mandal B (2014) Integrated management of polluted soils for enhancing productivity and quality of crops. In: Gaur RK, Sharma P (eds) Approaches to plant stress and their management. Springer, New Delhi, pp 1–21. doi:10.1007/978-81-322-1620-9_1

    Google Scholar 

  • Sai KT, Mandal BK, Shivendu R, Nandita D (2017) Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J Photochem Photobiol B Biol 166:158–168. doi:10.1016/j.jphotobiol.2016.11.017

    Article  CAS  Google Scholar 

  • Sala S, Anton A, McLaren SJ, Notarnicola B, Saouter E, Sonesson U (2016) In quest of reducing the environmental impacts of food production and consumption. J Clean Prod 140:387–398. (In Press)

    Article  Google Scholar 

  • Sandström V, Kauppi PE, Scherer L, Kastner T (2017) Linking country level food supply to global land and water use and biodiversity impacts: the case of Finland. Sci Total Environ 575:33–40

    Article  PubMed  CAS  Google Scholar 

  • Sawidis T, Krystallidis P, Veros D, Chet M (2012) A study of air pollution with heavy metals in athens city and attica basin using evergreen trees as biological indicators. Biol Trace Elem Res 148:396–408. doi:10.1007/s12011-012-9378-9

    Article  CAS  PubMed  Google Scholar 

  • Selmi W, Weber C, Rivière E, Blond N, Mehdi L, Nowak D (2016) Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For Urban Green 17:192–201. http://dx.doi.org/10.1016/j.ufug.2016.04.010

    Article  Google Scholar 

  • Servin AD, White JC (2016) Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. NanoImpact 1:9–12. doi:10.1016/j.impact.2015.12.002

    Article  Google Scholar 

  • Shah G, Jan M, Afreen M, Anees M, Rehman S, Daud MK, Malook I, Jamil M (2016) Halophilic bacteria mediated phytoremediation of salt-affected soils cultivated with rice. J Geochem Explor. doi:10.1016/j.gexplo.2016.03.011

    Google Scholar 

  • Shalaby T, Bayoumi Y, Abdalla N, Taha H, Alshaal T, Shehata S, Amer M, Domokos-Szabolcsy É, El-Ramady H (2016) Nanoparticles, soils, plants and sustainable agriculture. In: Ranjan S et al (eds) Nanoscience in food and agriculture 1, sustainable agriculture reviews 20. Springer, Cham. doi:10.1007/978-3-319-39303-2_10

    Google Scholar 

  • Shan G, Surampalli RY, Tyagi RD, Zhang TC (2009) Nanomaterials for environmental burden reduction, waste treatment, and nonpoint source pollution control: a review. Front Environ Sci Eng China 3(3):249–264. doi:10.1007/s11783-009-0029-0

    Article  Google Scholar 

  • Sharma S, Malaviya P (2016) Bioremediation of tannery wastewater by chromium resistant novel fungal consortium. Ecol Eng 91:419–425. http://dx.doi.org/10.1016/j.ecoleng.2016.03.005

    Article  Google Scholar 

  • Shukla A, Dasgupta N, Shivendu R, Singh S, Chidambaram R (2017) Nanotechnology towards prevention of anemia and osteoporosis: from concept to market. Biotechnol Biotechnol Equip. doi:10.1080/13102818.2017.1335615

  • Sierra J, Chopart JL, Guindé L, Blazy JM (2016) Optimization of biomass and compost management to sustain soil organic matter in energy cane cropping systems in a tropical polluted soil: a modelling study. Bioenergy Res. doi:10.1007/s12155-016-9729-z

    Google Scholar 

  • Simons K, Devos S, Putman K, Coomans D, Van Nieuwenhuyse A, Buyl R (2016) Direct cost saving potential in medication costs due to a reduction in outdoor air pollution for the Brussels Capital Region. Sci Total Environ 562:760–765. http://dx.doi.org/10.1016/j.scitotenv.2016.04.022

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Lee B-K (2016) Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): a possible mechanism for the removal of Cd from the contaminated soil. J Environ Manag 170:88–96

    Article  CAS  Google Scholar 

  • Singh V, Tiwari A, Das M (2016) Phyco-remediation of industrial waste-water and flue gases with algal-diesel engenderment from micro-algae: a review. Fuel 173:90–97. http://dx.doi.org/10.1016/j.fuel.2016.01.031

    Article  CAS  Google Scholar 

  • Slabe-Erker R, Bartolj T, Ogorevc M, Kavaš D, Koman K (2017) The impacts of agricultural payments on groundwater quality: spatial analysis on the case of Slovenia. Ecol Indic 73:338–344

    Article  CAS  Google Scholar 

  • Sołek-Podwika K, Ciarkowska K, Kaleta D (2016) Assessment of the risk of pollution by sulfur compounds and heavy metals in soils located in the proximity of a disused for 20 years sulfur mine (SE Poland). J Environ Manag 180:450–458. http://dx.doi.org/10.1016/j.jenvman.2016.05.074

    Article  CAS  Google Scholar 

  • Solís-Domínguez FA, Valentín-Vargas A, Chorover J, Maier RM (2011) Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Sci Total Environ 409:1009–1016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smajgl A, Ward J, Pluschke L (2016) The water–food–energy Nexus– Realising a new paradigm. J Hydrol 533:533–540

    Article  Google Scholar 

  • Stiborova H, Kolar M, Vrkoslavova J, Pulkrabova J, Hajslova J, Demnerova K, Uhlik O (2017) Linking toxicity profiles to pollutants in sludge and sediments. J Hazard Mater 321:672–680

    Article  CAS  PubMed  Google Scholar 

  • Subramanian V, Semenzin E, Hristozov D, Zabeo A, Malsch I, McAlea E, Murphy F, Mullins M, van Harmelen T, Ligthart T, Linkov I, Marcomini A (2016) Sustainable nanotechnology decision support system: bridging risk management, sustainable innovation and risk governance. J Nanopart Res 18:89. doi:10.1007/s11051-016-3375-4

    Article  Google Scholar 

  • Sundbo J (2016) Food scenarios 2025: drivers of change between global and regional. Futures 83:75–87

    Article  Google Scholar 

  • Syedmoradi L, Daneshpour M, Alvandipour M, Gomez FA, Hajghassem H, Omidfar K (2017) Point of care testing: the impact of nanotechnology. Biosens Bioelectron 87:373–387

    Article  CAS  PubMed  Google Scholar 

  • Taj T, Jakobsson K, Stroh E, Oudin A (2016) Air pollution is associated with primary health care visits for asthma in Sweden: a case-crossover design with a distributed lag non-linear model. Spatial and Spatio-temporal Epidemiology 17:37–44. http://dx.doi.org/10.1016/j.sste.2016.04.010

    Article  PubMed  Google Scholar 

  • Tambo E, Duo-quan W, Zhou X-N (2016) Tackling air pollution and extreme climate changes in China: implementing the Paris climate change agreement. Environ Int. http://dx.doi.org/10.1016/j.envint.2016.04.010

  • Tan LC, Nancharaiah YV, van Hullebusch ED, Lens PNL (2016) Selenium: environmental significance, pollution, and biological treatment technologies. Biotechnol Adv. http://dx.doi.org/10.1016/j.biotechadv.2016.05.005

  • Toro PPV, Bedoya LFV, Correa ID, Franco GRB, Alcántara-Carrió J, Baena JAP (2016) Impact of terrestrial mining and intensive agriculture in pollution of estuarine surface sediments: spatial distribution of trace metals in the Gulf of Urabá, Colombia. Mar Pollut Bull 111(1–2):311–320

    Article  CAS  Google Scholar 

  • Tosco T, Papini MP, Viggi CC, Sethi R (2014) Nanoscale zerovalent iron particles for groundwater remediation: a review. J Clean Prod 77:10–21

    Article  CAS  Google Scholar 

  • Tripathi V, Edrisi SA, Abhilash PC (2016) Towards the coupling of phytoremediation with bioenergy production. Renew Sust Energ Rev 57:1386–1389. http://dx.doi.org/10.1016/j.rser.2015.12.116

    Article  CAS  Google Scholar 

  • Tripathi V, Fraceto LF, Abhilas PC (2015) Sustainable clean-up technologies for soils contaminated with multiple pollutants: plant-microbe-pollutant and climate nexus. Ecol Eng 82:330–335

    Article  Google Scholar 

  • Tu J, Tu W, Tedders SH (2016) Spatial variations in the associations of term birth weight with ambient air pollution in Georgia, USA. Environ Int 92–93:146–156. doi:10.1016/j.envint.2016.04.005

    Article  PubMed  CAS  Google Scholar 

  • Ullwer J, Campos JK, Straube F (2016) Waste and pollution management practices by German companies. IFAC-Papers On Line 49(2):102–107. doi:10.1016/j.ifacol.2016.03.018

    Article  Google Scholar 

  • Venkatesan P (2016) WHO report: air pollution is a major threat to health. Lancet Respir Med 4(5):351

    Article  PubMed  Google Scholar 

  • Vrain E, Lovett A (2016) The roles of farm advisors in the uptake of measures for the mitigation of diffuse water pollution. Land Use Policy 54:413–422. http://dx.doi.org/10.1016/j.landusepol.2016.03.007

    Article  Google Scholar 

  • Walia N, Dasgupta N, Shivendu R, Chen L, Chidambaram R (2017) Fish oil based Vitamin D nanoencapsulation by ultrasonication and bioaccessibility analysis in simulated gastro-intestinal tract. Ultrason Sonochem 39:623–635. doi:10.1016/j.ultsonch.2017.05.021

    Article  CAS  Google Scholar 

  • Wan X, Lei M, Chen T (2016) Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci Total Environ 563–564:796–802

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Lombi E, Zhao F-J, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712. http://dx.doi.org/10.1016/j.tplants. 2016.04.05

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Du X, Liu Y (2017) Measuring spatial spillover effects of industrial emissions: a method and case study in Anhui province, China. J Clean Prod 141:1240–1248

    Article  CAS  Google Scholar 

  • Wiek A, Foley RW, Guston DH (2012) Nanotechnology for sustainability: what does nanotechnology offer to address complex sustainability problems? J Nanopart Res 14(2012):1093. doi:10.1007/s11051-012-1093-0

    Article  CAS  Google Scholar 

  • Wiek A, Foley RW Guston DH (2014) Nanotechnology for sustainability: what does nanotechnology offer to address complex sustainability problems? doi:10.1007/978-3-319-05041-6_30. Reprinted from the J Nanopart Res. doi:10.1007/s11051-012-1093-0

    Google Scholar 

  • Wilson J, Berntsen HF, Zimmer KE, Verhaegen S, Frizzell C, Ropstad E, Connolly L (2016) Do persistent organic pollutants interact with the stress response? Individual compounds, and their mixtures, interaction with the glucocorticoid receptor. Toxicol Lett 241:121–132. http://dx.doi.org/10.1016/j.toxlet.2015.11.014

    Article  CAS  PubMed  Google Scholar 

  • Witczak A, Pohoryło A, Mituniewicz-Małek A (2016) Assessment of health risk from organochlorine xenobiotics in goat milk for consumers in Poland. Chemosphere 148:395–402. http://dx.doi.org/10.1016/j.chemosphere.2016.01.025

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Ni Y, Li H, Pan L, Yang D, Baccarelli AA, Deng F, Chen Y, Shima M, Guo X (2016) Short-term exposure to high ambient air pollution increases airway inflammation and respiratory symptoms in chronic obstructive pulmonary disease patients in Beijing, China. Environ Int 94:76–82. http://dx.doi.org/10.1016/j.envint.2016.05.004

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Fang Z, Cheng W, Tsang PE, Zhao D (2014) Remediation of polybrominated diphenyl ethers in soil using Ni/Fe bimetallic nanoparticles: influencing factors, kinetics and mechanism. Sci Total Environ 485–486:363–370. doi:10.1016/j.scitotenv.2014.03.039

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Shen Z, Zhang B, Yang J, HongW-X ZZ, Liu J (2013) Silica nanoparticles capture atmospheric lead: implications in the treatment of environmental heavy metal pollution. Chemosphere 90:653–656. doi:10.1016/j.chemosphere.2012.09.033

    Article  CAS  PubMed  Google Scholar 

  • Ye-Tao TA, Teng-Hao-Bo DE, Qi-Hang WU (2012) Designing cropping systems for metal-contaminated sites: a review. Pedosphere 22:470–488

    Article  Google Scholar 

  • Yildiz O, Bradford PD (2013) Aligned carbon nanotube sheet high efficiency particulate air filters. Carbon 64:295–304. doi:10.1016/j.carbon.2013.07.066

    Article  CAS  Google Scholar 

  • Yin S, Wu Y, Xu W, Li Y, Shen Z, Feng C (2016) Contribution of the upper river, the estuarine region, and the adjacent sea to the heavy metal pollution in the Yangtze Estuary. Chemosphere 155:564–572. http://dx.doi.org/10.1016/j.chemosphere.2016.04.095

    Article  CAS  PubMed  Google Scholar 

  • Younos T, Parece TE (2016) Sustainable water management in urban environments. The handbook of environmental chemistry series, vol 47. Springer, New York, doi:10.1007/978-3-319-29337-0

  • Yu L, Zhu J, Huang Q, Su D, Jiang R, Li H (2014) Application of a rotation system to oilseed rape and rice fields in Cd-contaminated agricultural land to ensure food safety. Ecotoxicol Environ Saf 108:287–293

    Article  CAS  PubMed  Google Scholar 

  • Yuksel I (2015) Water management for sustainable and clean energy in Turkey. Energy Reports 1:129–133. http://dx.doi.org/10.1016/j.egyr.2015.05.001

    Article  Google Scholar 

  • Zeng X, Wu J, Wang D, Zhu X (2016b) Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion. Environ Res 148:586–594. http://dx.doi.org/10.1016/j.envres.2015.11.022

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Liu X, Xu G, Wang W, An W (2014) Tree-ring growth recovers, but d13C and d15N do not change, after the removal of point-source air pollution: a case study for poplar (Populus cathayana) in northwestern China. Environ Earth Sci 72:2173–2182. doi:10.1007/s12665-014-3127-7

    Article  CAS  Google Scholar 

  • Zeng X-W, Vivian E, Mohammed KA, Jakhar S, Vaughn M, Huang J, Zelicoff A, Xaverius P, Bai Z, Lin S, Hao Y-T, Paul G, Morawska L, Wang S-Q, Qian Z, Dong G-H (2016a) Long-term ambient air pollution and lung function impairment in Chinese children from a high air pollution range area: the seven northeastern cities (SNEC) study. Atmos Environ 138:144–151. http://dx.doi.org/10.1016/j.atmosenv.2016.05.003

    Article  CAS  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332. http://dx.doi.org/10.1023/A:1025520116015

    Article  CAS  Google Scholar 

  • Zhang W, Wang C, Li Y, Wang P, Wang Q, Wang D (2014) Seeking sustainability: multiobjective evolutionary optimization for urban wastewater reuse in China. Environ Sci Technol 48:1094–1102

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Qin X, Tang J, Liu W, Yang H (2016) Review of arsenic geochemical characteristics and its significance on arsenic pollution studies in karst groundwater, Southwest China. Appl Geochem. In Press

    Google Scholar 

  • Zhao X, Liu W, Cai Z, Han B, Qian T, Zhao D (2016) An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res 100:245–266. http://dx.doi.org/10.1016/j.watres.2016.05.019

    Article  CAS  PubMed  Google Scholar 

  • Zheng D, Shi M (2017) Multiple environmental policies and pollution haven hypothesis: evidence from China’s polluting industries. J Clean Prod 141:295–304

    Article  Google Scholar 

  • Zhong J, Cai X-M, Bloss WJ (2016) Coupling dynamics and chemistry in the air pollution modelling of street canyons: a review. Environ Pollut 214:690–704. http://dx.doi.org/10.1016/j.envpol.2016.04.052

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Zhang L, Cheng Z (2015) Removal of organic pollutants from aqueous solution using agricultural wastes: a review. J Mol Liq 212:739–762. http://dx.doi.org/10.1016/j.molliq.2015.10.023

    Article  CAS  Google Scholar 

  • Zhou P, Huang J, Pontius RG Jr, Hong H (2016) New insight into the correlations between land use and water quality in a coastal watershed of China: does point source pollution weaken it? Sci Total Environ 543:591–600. http://dx.doi.org/10.1016/j.scitotenv.2015.11.063

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank the outstanding contribution of STDF research teams (Science and Technology Development Fund, Egypt) and MBMF/DLR (the Federal Ministry of Education and Research of the Federal Republic of Germany), (Project ID 5310) for their help. Great support from this German-Egyptian Research Fund (GERF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan El-Ramady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

El-Ramady, H. et al. (2017). Nanoremediation for Sustainable Crop Production. In: Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanoscience in Food and Agriculture 5. Sustainable Agriculture Reviews, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-58496-6_12

Download citation

Publish with us

Policies and ethics