Advertisement

Fatigue of Spring Materials

  • Vladimir Kobelev
Chapter

Abstract

In the present and the next chapter, an approach is developed to account the stress gradient effect on fatigue life of springs. The applied method of the analytical description is based on two steps. The first step provides the description of fatigue life of the homogeneously stressed material subjected to the cyclic load. This problem is studied in this chapter. Common methods for the estimation of fatigue life, based on Goodman and Haigh diagrams, stress-life and strain-life approaches, are briefly summarized. More attention is paid to different method of fatigue analysis, which is describes the crack growths per cycle. The expressions for spring length over the number of cycles are derived. The second step uses the weak-link concept for the non-homogeneously loaded structural elements. The estimation of the fatigue life utilizes the closed-form solutions for fatigue crack propagation from this chapter. The weak-link is applied for the evaluation of fatigue life of helical spring in Chap.  9.

References

  1. Akiniwa, Y., Tanaka, K.: Evaluation of fatigue strength of high strength steels in very long life regime. In: Third International Conference on Very High Cycle Fatigue (VHCF-3), Shiga, Japan, September 16–19, 2004. p. 464–71 (2004)Google Scholar
  2. Akiniwa, Y., Stanzl-Tschegg, S., Mayer, H., Wakita, M., Tanaka, K.: Fatigue strength of spring steel under axial and torsional loading in the very high cycle regime. Int. J. Fatigue. 30, 2057–2063 (2008)CrossRefGoogle Scholar
  3. Basquin, O.H.: The exponential law of endurance tests. Proc. ASTM. 11, 625 (1910)Google Scholar
  4. Beden, S.M., Abdullah, S., Ariffin, A.K.: Review of fatigue crack propagation models for metallic components. Eur. J. Sci. Res. ISSN 1450-216X 283, 364-397 (2009)Google Scholar
  5. Bergmann, J.W.: Zur Betriebsfestigkeit gekerbter Bauteile auf der Grundlage der örtlichen Beanspruchung. Dissertation, Technische Hochschule Darmstadt (1983)Google Scholar
  6. Blasón, S., Correia, J.A.F.O., Apetre, N., Arcari, A., De Jesus, A.M.P., Moreira, P., Fernández-Canteli, A.: Proposal of a fatigue crack propagation model taking into account crack closure effects using a modified CCS crack growth model. Procedia Structural Integrity 1, 110–117, XV Portuguese Conference on Fracture, 10–12 February 2016, Paço de Arcos, Portugal (2016)Google Scholar
  7. Boyce, B.L., Ritchie, R.O.: Effect of load ratio and maximum stress intensity on the fatigue threshold in Ti6Al4V. Eng. Fract. Mech. 68, 129–147 (2001). doi: 10.1016/S0013-7944(00)00099-0 CrossRefGoogle Scholar
  8. Branco, C.M., Radon, J.C., Culver, L.E.: Growth of fatigue cracks in steels. Metal Sci. 10, 149–155 (1976)CrossRefGoogle Scholar
  9. Carpinteri, A. (ed.): Handbook of Fatigue Crack Propagation in Metallic Structures. Elsevier Science B.V., Philadelphia, PA (1994)Google Scholar
  10. Castillo, E., Fernández-Canteli, A., Siegele, D.: Obtaining S–N curves from crack growth curves: an alternative to self-similarity. Int. J. Fract. 187, 159–172 (2014). doi: 10.1007/s10704-014-9928-6 CrossRefGoogle Scholar
  11. Chen, F., Wang, F., Cui, W.: Fatigue life prediction of engineering structures subjected to variable amplitude loading using the improved crack growth rate model. Fatigue Fract. Eng. Mater. Struct. 35, 278–290 (2011). doi: 10.1111/j.1460-2695.2011.01618.x CrossRefGoogle Scholar
  12. Coffin, L.F.: A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME. 76, 931–950 (1954)Google Scholar
  13. Correia, J.A.F.O., Blasón, S., Arcari, A., Calvente, M., Apetre, N., Moreira, P.M.G.P., De Jesus, A.M.P., Canteli, A.F.: Modified CCS fatigue crack growth model for the AA2019-T851 based on plasticity-induced crack-closure. In: XV Portuguese Conference on Fracture and Fatigue, Theoretical and Applied Fracture Mechanics, Volume 85, Part A, October 2016, pp. 26–36 (2016a)Google Scholar
  14. Correia, J.A.F.O., Blasón, S., De Jesus, A.M.P., Canteli, A.F., Moreira, P.M.G.P., Tavares, P.J.: Fatigue life prediction based on an equivalent initial flaw size approach and a new normalized fatigue crack growth model. Eng. Fail. Anal. 69, 15–28 (2016b)CrossRefGoogle Scholar
  15. de Castro, J.T.P., Meggiolaro, M.A., Miranda, A.C.: On the estimation of fatigue crack propagation lives under variable amplitude loads using strain-life data. In: Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering, ABCM, November 15–20, 2009, Gramado, RS, Brazil (2009)Google Scholar
  16. Donahue, R.J., Clark, H.M., Atanmo, P., Kumble, R., McEvily, A.J.: Crack opening displacement and the rate of fatigue crack growth. Int. J. Fract. Mech. 8, 209–219 (1972). doi: 10.1007/BF0070388 CrossRefGoogle Scholar
  17. Dowling, N.E.: Mean stress effects in stress-life and strain-life fatigue, F2004/51, 2nd SAE Brasil International Conference on Fatigue. SAE International, Warrendale (2004)Google Scholar
  18. Elber, W.: Fatigue crack closure under cyclic tension. Eng. Fract. Mech. 2(1), 37–45 (1970). doi: 10.1016/0013-7944(70)90028-7 CrossRefGoogle Scholar
  19. Elber, W.: The significance of fatigue crack closure, STP486. Annual Meeting ASTM, Toronto, ASTM International (1971) doi:  10.1520/STP26680S
  20. Ellyin, F.: Stochastic modelling of crack growth based on damage accumulation. Theor. Appl. Fract. Mech. 6, 95–101 (1986)CrossRefGoogle Scholar
  21. EN 13906-1:2013-11: Cylindrical Helical Springs Made from Round Wire and Bar – Calculation and Design – Part 1: Compression Springs; German version DIN EN 13906-1:2013 (2013a)Google Scholar
  22. EN 13906-2:2013-09: Cylindrical Helical Springs Made from Round Wire and Bar – Calculation and Design – Part 2: Extension Springs; German version DIN EN 13906-2:2013 (2013b)Google Scholar
  23. EN 13906-3:2014-06: Cylindrical Helical Springs Made from Round Wire and Bar – Calculation and Design – Part 3: Torsion Springs; German version DIN EN 13906-3:2014 (2014)Google Scholar
  24. EN 16984:2017-02: Disc Springs – Calculation; German version DIN EN 16984:2016 (2017)Google Scholar
  25. Fatemi, A., Yang, L.: Cumulative fatigue damage and life prediction theories: a survey of the stat of the art for homogeneous materials. Int. J. Fatigue. 20(1), 9–34 (1998)CrossRefGoogle Scholar
  26. Fleck, N.A., Kang, K.J., Ashby, M.F.: The cyclic properties of engineering materials. Acta Metall. Mater. 42(2), 365–381 (1994)CrossRefGoogle Scholar
  27. Forman, R.G., Kearney, V.E., Engle, R.M.: Numerical analysis of crack propagation in cyclic loaded structures. J. Basic Eng. Trans. ASME. D89, 459–464 (1967)CrossRefGoogle Scholar
  28. Freudenthal, A.M.: Fatigue and fracture mechanics. Eng. Fract. Mech. 5(2), 403–414 (1973). doi: 10.1016/0013-7944(73)90030-1 CrossRefGoogle Scholar
  29. Gerber, W.: Bestimmung der zulässigen Spannungen in Eisenkonstruktionen. Z.d. Bayer. Architekten u. Ingenieurvereins. 6, 101–110 (1874)Google Scholar
  30. Goodman, J.: Mechanics Applied to Engineering. Longmans, London (1899)zbMATHGoogle Scholar
  31. Gumbel, E.J.: Statistical theory of extreme values and some practical applications. Applied Mathematics Series. 33 (1st ed.), U.S. Department of Commerce, National Bureau of Standards (1954)Google Scholar
  32. Haigh, B.P.: Report on alternating stress tests of a sample of mild steel received from the British Association Stress Committee. Report of the British Association for the Advancement of Science. London: 1916, 85th Meeting, s. 163–170 (1915)Google Scholar
  33. Hattingh, D.E.: The fatigue properties of spring steel, Ph.D. thesis, University of Plymouth (1998)Google Scholar
  34. Hutchinson, J.: Singular behaviour at the end of a tensile crack in a hardening material. J. Mech. Phys. Solids. 16, 13–31 (1968)CrossRefzbMATHGoogle Scholar
  35. Ince, A., Glinka, G.: A modification of Morrow and Smith–Watson–Topper mean stress correction models. Fatigue Fract. Eng. Mater. Struct. 34, 854–867 (2011)CrossRefGoogle Scholar
  36. Kanninen, M.F., Popelar, C.H.: Advanced Fracture Mechanics. Oxford University Press, New York (1985)zbMATHGoogle Scholar
  37. Klesnil, M., Lukas, P.: Effect of stress cycle asymmetry on fatigue crack growth. Mater. Sci. Eng. 9, 231–240 (1972)CrossRefGoogle Scholar
  38. Kobelev, V.: Unification proposals for fatigue crack propagation laws. Multidiscip. Model. Mater. Struct. 13 (2017)Google Scholar
  39. Krupp, U.: Fatigue Crack Propagation in Metals and Alloys: Microstructural Aspects and Modelling Concepts. ISBN: 978-3-527-31537-6, Wiley-VCH, Berlin (2007)Google Scholar
  40. Kujawski, D., Ellyin, F.: A fatigue crack propagation model. Eng. Fract. Mech. 20, 695–704 (1984)CrossRefGoogle Scholar
  41. Lukács, J.: Fatigue crack growth tests on type 321 austenitic stainless steel in corrosive environment and at elevated temperature. Proc. Eng. 2, 1201–1210 (2010)Google Scholar
  42. Manson, S.S. Behavior of Materials Under Conditions of Thermal Stress, NACA-TR-1170, National Advisory Committee for Aeronautics. Lewis Flight Propulsion Lab., Cleveland, OH (1953)Google Scholar
  43. McEvily, A.J., Groeger, J.: On the Threshold for Fatigue-Crack Growth. Fourth International Conference on Fracture, vol. 2. University of Waterloo Press, Waterloo, Canada, 1293–1298 (1977)Google Scholar
  44. Meyer, N.: Effects of mean stress and stress concentration on fatigue behavior of ductile iron. Theses and Dissertations, The University of Toledo Digital Repository, Paper 1782 (2014)Google Scholar
  45. Miller, M.S., Gallagher, J.P.: An analysis of several Fatigue Crack Growth Rate (FCGR) descriptions. Fatigue crack growth measurement and data analysis. In: Hudak, S.J. Jr., Bucci, R.J. (eds.) ASTM STP 738, American Society for Testing and Materials, pp. 205–251 (1981)Google Scholar
  46. Mishnaevsky Jr., L., Brøndsted, P.: Modeling of fatigue damage evolution on the basis of the kinetic concept of strength. Int. J. Fract. 144, 149–158 (2007). doi: 10.1007/s10704-007-9086-1 CrossRefzbMATHGoogle Scholar
  47. Morrow, J.: Fatigue properties of metals, Section 3.2. In: Fatigue Design Handbook, Pub. No. AE-4. SAE, Warrendale, PA (1968)Google Scholar
  48. Muhr, T.H.: New technologies for engine valve springs. SAE Paper 930912, New Engine Design and Engine Component Technology, SAE SP-972, 199–208 (1993)Google Scholar
  49. Noroozi, A.H., Glinka, G., Lambert, S.: A two parameter driving force for fatigue crack growth analysis. Int. J. Fatigue. 27(10–12), 1277–1296 (2005)CrossRefzbMATHGoogle Scholar
  50. Noroozi, A.H., Glinka, G., Lambert, S.: Prediction of fatigue crack growth under constant amplitude loading and a single overload based on elasto-plastic crack tip stresses and strains. Eng. Fract. Mech. 75(2), 188–206 (2008)CrossRefGoogle Scholar
  51. Paris, P., Erdogan, F.: A critical analysis of crack propagation laws. J. Basic Eng. Trans. ASME. 528–534 (1963)Google Scholar
  52. Pugno, N., Ciavarella, M., Cornetti, P., Carpinteri, A.: A generalized Paris’ law for fatigue crack growth. J. Mech. Phys. Solids. 54, 1333–1349 (2006)CrossRefzbMATHGoogle Scholar
  53. Pugno, N., Cornetti, P., Carpinteri, A.: New unified laws in fatigue: from the Wöhler’s to the Paris’ regime. Eng. Fract. Mech. 74, 595–601 (2007)CrossRefGoogle Scholar
  54. Pyttel, B., Schwerdt, D., Berger, C.: Very high cycle fatigue – is there a fatigue limit? Int. J. Fatigue. 33, 49–58 (2011)CrossRefGoogle Scholar
  55. Pyttel, B., Brunner, I., Kaiser, B., Berger, C., Mahendran, M.: Fatigue behaviour of helical compression springs at a very high number of cycles – investigation of various influences. Int. J. Fatigue. 60, 101–109 (2013)CrossRefGoogle Scholar
  56. Reich, R., Kletzin, U.: Fatigue damage parameters and their use in estimating lifetime of helical compression springs. 56th International Scientific Colloquium, Ilmenau University of Technology, 12–16 September 2011 (2011)Google Scholar
  57. Rice, J., Rosengren, G.: Plane strain deformation near a crack tip in a power-law hardening material. J. Mech. Phys. Solids. 16, 1–12 (1968)CrossRefzbMATHGoogle Scholar
  58. Richard, H.A., Sander, M.: Ermüdungsrisse. ISBN 9 78-3-8348-1594-1, doi:  10.1007/978-3-8348-8663-7. Springer, Berlin (2012)
  59. Ritchie, R.O., Boyce, B.L., Campbell, J.P., Roder, O., Thompson, A.W., Milligan, W.W.: Thresholds for high-cycle fatigue in a turbine engine Ti–6Al–4V alloy. Int. J. Fatigue. 21, 653–662 (1999). doi: 10.1016/S0142-1123(99)00024-9 CrossRefGoogle Scholar
  60. SAE HS 1582: Manual on Design and Manufacture of Coned Disk Springs (Belleville Springs) and Spring Washers. SAE International, Warrendale (1988)Google Scholar
  61. SAE HS 788: Manual on Design and Application of Leaf Springs. SAE International, Warrendale (1980)Google Scholar
  62. SAE HS 795: SAE Manual on Design and Application of Helical and Spiral Springs. SAE International, Warrendale (1997)Google Scholar
  63. Schuller, R., Mayer, H., Fayard, A., Hahn, M., Bacher-Höchst, M.: Very high cycle fatigue of VDSiCr spring steel under torsional and axial loading. Mat.-wiss. u. Werkstofftech., 44, No. 4. doi: 10.1002/mawe.201300029 (2013)
  64. Schwalbe, K.-H.: Bruchmechanik metallischer Werkstoffe. Carl Hanser Verlag, München, Wien (1980)Google Scholar
  65. Schwerdt, D.: Schwingfestigkeit und Schädigungsmechanismen der Aluminiumlegierungen EN AW-6056 und EN AW-6082 sowie des Vergütungsstahls 42CrMo4 bei sehr hohen Schwingspielzahlen, Ph. D. thesis, TU Darmstadt, 210 p (2011)Google Scholar
  66. Shi, K., Cai, L., Bao, C.: Crack growth rate model under constant cyclic loading and effect of different singularity fields. Proc. Mater. Sci. 3, 1566–1572 (2014)CrossRefGoogle Scholar
  67. Smith, K.N., Watson, P., Topper, T.H.: A stress–strain function for the fatigue of metals. J. Mater. 5(4), 767–778 (1970)Google Scholar
  68. Socie, D.F., Morrow, J.D.: Review of contemporary approaches to fatigue damage analysis. In: Burke, J.J., Weiss, V. (eds.) Risk and Failure Analysis for Improved Performance and Reliability, pp. 141–194. Plenum Publication, New York, NY (1980)CrossRefGoogle Scholar
  69. Soderberg, C.R.: ASME Trans. 52, APM-52-2, 13–28 (1930)Google Scholar
  70. Sorensen, A.: A general theory of fatigue damage accumulation. J. Basic Eng. 91(1), 1–14 (14 pages) (1969) doi:10.1115/1.3571021Google Scholar
  71. Sornette, D., Magnin, T., Brechet, Y.: The physical origin of the Coffin-Manson Law in low-cycle fatigue. Europhys. Lett. 20(5) (1992)Google Scholar
  72. Suresh, S.: Fatigue of Materials. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  73. Totten, G.: Fatigue crack propagation. Adv. Mater. Process. 2008, 39–41 (2008)Google Scholar
  74. Walker, K.: The effect of stress ratio during crack propagation and fatigue for 2924-T3 and 7075-T6 Aluminum. In: Effects of Environment and Complex Load History on Fatigue Life. ASTM STP 462 (1970)Google Scholar
  75. Weertman, J.: In: Lerner, R.G., Trigg, G.L. (eds.) Fatigue Encyclopedia of Physics, 2nd edn. VCH, New York (1991)Google Scholar
  76. Wheeler, O.E.: Spectrum loading and crack growth. J. Basic Eng. 94, 181–186 (1972)CrossRefGoogle Scholar
  77. Xue, L.: A unified expression for low cycle fatigue and extremely low cycle fatigue and its implication for monotonic loading. Int. J. Fatigue. 30, 1691–1698 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Vladimir Kobelev
    • 1
  1. 1.Faculty of EngineeringUniversity of SiegenSiegenGermany

Personalised recommendations