Advertisement

Creep and Relaxation of Springs

  • Vladimir Kobelev
Chapter

Abstract

In this chapter the time-depending behavior of spring elements under steady load is studied. The common creep laws are implemented for the description of material. For basic spring elements the Norton-Bailey, Garofalo and Naumenko-Altenbach-Gorash constitutive models were studied. Analytical models are developed for the relaxation of stresses and creep under constant load. Closed-form solutions of the analytical models of creep and relaxation are found. The explanation of the experimental procedure for the experimental acquisition of creep models is given.

References

  1. Abu-Haiba, M.S., Fatemi, A., Zoroufi, M.: Creep deformation and monotonic stress-strain behavior of Haynes alloy 556 at elevated temperatures. J. Mater. Sci. 37, 2899–2907 (2002)CrossRefGoogle Scholar
  2. Almen, J.O., Laszlo, A.: The uniform section disks spring. Trans. ASME. 58(4), 305–314 (1936)Google Scholar
  3. Ashby, M.F.: Material selection in mechanical design. Elsevier, Amsterdam (2011)Google Scholar
  4. Betten, J.: Creep mechanics, 3d edn. Springer, Berlin (2008)Google Scholar
  5. Boardman, F.D.: Derivation of creep constants from measurements of relaxation creep in springs. Philos. Mag. 11(109), 185–187 (1965). doi: 10.1080/14786436508211935 CrossRefGoogle Scholar
  6. Boyle, J.T.: The creep behavior of simple structures with a stress range-dependent constitutive model. Arch. Appl. Mech. 82, 495–514 (2012)CrossRefzbMATHGoogle Scholar
  7. Boyle, J.T., Spence, J.: Stress analysis for creep. Butterworth, London (1983)Google Scholar
  8. Chang, D.J.: Prediction of Stress Relaxation for Compression and Torsion Springs, TR-96(8565)-l, The Aerospace Corporation Technology Operations, El Segundo, CA 90245-4691, (1995)Google Scholar
  9. DIN EN 16984:2017-02: Disc springs – Calculation; German version EN 16984:2016 (2017)Google Scholar
  10. Garofalo, F.: An empirical relation defining the stress dependence of minimum creep rate in metals. Trans. Metall. Soc. AIME. 227, 351–356 (1963)Google Scholar
  11. Geinitz, V., Weiß, M., Kletzin, U., Beyer, P.: Relaxation of helical springs and spring steel wires, 56th International Scientific Colloquium, Ilmenau University of Technology (2011)Google Scholar
  12. Gittus, J.H.: Implications of some data on relaxation creep in nimonic 80a. Philos. Mag. 9(101), 749–753 (1964). doi: 10.1080/14786436408211888 CrossRefGoogle Scholar
  13. Gittus, J.: The mechanical equation of states: Dislocation creep due to stresses varying in magnitude and direction. Philos. Mag. 24(192), 1423–1440 (1971). doi: 10.1080/14786437108217422 CrossRefGoogle Scholar
  14. Gooch, D.J.: Techniques for Multiaxial Creep Testing. Springer Science & Business Media, 364 p (1986).Google Scholar
  15. Hübner, W., Emmerling, F.A.: Axialsymmetrische große Deformationen einer elastischen Kegelschale. ZAMM – J. Appl. Math. Mech. 62(8), 404–406 (1982)CrossRefGoogle Scholar
  16. Kassner, M.: Fundamentals of creep in metals and alloys, 2nd edn. Elsevier, Amsterdam (2008)Google Scholar
  17. Kobelev, V.: Relaxation and creep in twist and flexure. Multidiscip. Model. Mater. Struct. 10(3), 304–327 (2014). doi: 10.1108/MMMS-11-2013-0067 CrossRefGoogle Scholar
  18. Naumenko, K., Altenbach, H.: Modelling of creep for structural analysis. Springer, Berlin (2007)CrossRefzbMATHGoogle Scholar
  19. Naumenko, K., Altenbach, H., Gorash, Y.: Creep analysis with a stress range dependent constitutive model. Arch. Appl. Mech. 79, 619–630 (2009)CrossRefzbMATHGoogle Scholar
  20. Odquist, F.K.G., Hult, J.: Kriechfestigkeit metallischer Werkstoffe. Springer, Berlin/Göttingen/Heidelberg (1962)CrossRefGoogle Scholar
  21. Timoshenko, S.: Strength of materials. Van Nostrand, Toronto, New York, London (1948)zbMATHGoogle Scholar
  22. Yao, H.-T., Xuan, F.-Z., Wang, Z., Tu, S.-T.: A review of creep analysis and design under multi-axial stress states. Nucl. Eng. Des. 237, 1969–1986 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Vladimir Kobelev
    • 1
  1. 1.Faculty of EngineeringUniversity of SiegenSiegenGermany

Personalised recommendations