Advertisement

“Equivalent Columns” for Helical Springs

  • Vladimir Kobelev
Chapter

Abstract

In this chapter the helical spring is substituted by a flexible rod that is located along the axis of helix. This rod possesses the same mechanical features, as the spring itself. Its bending, torsion and compression stiffness are equal to the corresponding stiffness of the helical spring. This rod is known as an “equivalent column” of the helical spring. The “equivalent column” equations are considerable easier to handle than the original equations of the helical spring. The integral spring properties, as an axial and transversal stiffness, buckling loads, fundamental frequencies could be directly determined using the “equivalent column” equations. In contrast, the local properties, like stresses in the wire or contact forces, could be evaluated only with the more complicated equations of the helical elastic rod.

In this chapter the stability and transversal vibrations of the spring are studied from the unified point of view, which is based on the “equivalent column” concept. Buckling refers to the loss of stability up to the sudden and violent failure of straight bars or beams under the action of pressure forces, whose line of action is the column axis. This concept is applied for the stability of helical springs.

An alternative approach method is based on the dynamic criterion for the spring stability. The equations for transverse (lateral) vibrations of the compressed coil springs were derived. This solution expresses the fundamental natural frequency of the transverse vibrations of the column as the function of the axial force, as well as the variable length of the spring.

References

  1. Andreeva, L.E.: Elastic Elements of Instruments (Russ.), 456 p. Mashgiz, Moscow (1962). [Transl.: Baruch, A., Alster, D.: Israel Program for Scientific Translation, Ltd., Jerusalem (1966)]Google Scholar
  2. Ayadi, S., Hadj-Taïeb, E.: Finite element solution of dynamic response of helical springs. Int. J. Simul. Model. 7(1), 17–28 (2008). doi: 10.2507/IJSIMM07(1)2.094 CrossRefGoogle Scholar
  3. Becker, L.E., Chassie, G.G., Cleghorn, W.L.: On the natural frequencies of helical compression springs. Int. J. Mech. Sci. 44, 825–841 (2002)CrossRefzbMATHGoogle Scholar
  4. Biezeno, C.B., Koch, J.J.: Knickung von Schraubenfedern. Z. Angew. Math. Mech. 5, 279–280 (1925)CrossRefzbMATHGoogle Scholar
  5. Bolotin, V.V.: The Dynamic Stability of Elastic Systems. Holden Day, San Francisco (1964)zbMATHGoogle Scholar
  6. Chan, K.T., Wang, X.Q., So, R.M.C., Reid, S.R.: Superposed standing waves in a Timoshenko beam. Proc. R. Soc. A. 458, 83–108 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Chassie, G.G., Becker, L.E., Cleghorn, W.L.: On the buckling of helical springs under combined compression and torsion. Int. J. Mech. Sci. 39(6), 697–704. doi: 10.1016/S0020-7403(96)00070-7 (1997)
  8. Collins, J.A., Busby, H.R., Staab, G.H.: Mechanical Design of Machine Elements and Machines: A Failure Prevention Perspective. Wiley (2010)Google Scholar
  9. Costello, G.A.: Radial expansion of impacted helical springs. J. Appl. Mech. Trans. ASME. 42, 789–792 (1975)CrossRefGoogle Scholar
  10. Dick J.: On transverse vibrations of a helical spring with pinned ends and no axial load. Philos. Mag. Ser. 7. 33, 222, 513–519 (1942)Google Scholar
  11. DIN EN 13906-1:2013-11 Cylindrical Helical Springs Made from Round Wire and Bar—Calculation and Design—Part 1: Compression Springs. German version EN 13906-1:2013 (2013)Google Scholar
  12. Encyclopedia of Spring Design: Spring Manufacturers Institute, 2001 Midwest Road, Suite 106, Oak Brook, IL 60523-1335 USA (2013)Google Scholar
  13. Frikha, A., Treyssédee, F., Cartraud, P.: Effect of axial load on the propagation of elastic waves in helical beams. Wave Motion. 48(1), 83–92 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Godoy L.: Theory of Elastic Stability: Analysis and Sensitivity, 450 p. CRC Press (1999)Google Scholar
  15. Gramme, I.R.: Die Knickung von Schraubenfedern. Z. Angew. Math. Mech. 4, 384–389 (1924)CrossRefzbMATHGoogle Scholar
  16. Guido, A.R., Della Pietra, L., della Valle, S.: Transverse vibrations of cylindrical helical springs. Meccanica. 13(2), 90–108 (1978)CrossRefzbMATHGoogle Scholar
  17. Haktanir, V.: The complementary functions method for the element stiffness matrix of arbitrary spatial bars of helicoidal axes. Int. J. Numer. Methods Eng. 38(6), 1031–1056 (1995). doi: 10.1002/nme.1620380611 CrossRefzbMATHGoogle Scholar
  18. Hamza, A., Ayadi, S., Hadj-Taieb, E.: Propagation of strain waves in cylindrical helical springs. J. Vib. Control. (2013a). doi: 10.1177/1077546313503878 Google Scholar
  19. Hamza, A., Ayadi, S., Hadj-Taieb, E.: Resonance phenomenon of strain waves in helical compression springs. Mech. Ind. 14, 253–265 (2013b). doi: 10.1051/meca/2013069 CrossRefGoogle Scholar
  20. Haringx, J.A.: On highly compressible helical springs and rubber rods, and their application for vibration-free mountings. Philips Res. Rep. 3, 401–449 (1948)Google Scholar
  21. Helical Springs: Engineering Design Guides. The United Kingdom Atomic Energy Authority and Oxford University Press (1974). ISBN 0-19-859142XGoogle Scholar
  22. Kessler, D.A., Rabin, Y.: Stretching instability of helical springs. Phys. Rev. Lett. 90, 024301 (2003)CrossRefGoogle Scholar
  23. Kobelev, V.: Effect of static axial compression on the natural frequencies of helical springs. Multidiscip. Model. Mater. Struct. 10(3), 379–398 (2014)CrossRefGoogle Scholar
  24. Kobelev, V.: Isoperimetric inequality in the periodic Greenhill problem of twisted elastic rod. Struct. Multidiscip. Optim. 54(1), 133–136 (2016)MathSciNetCrossRefGoogle Scholar
  25. Kobelev, V.: Some exact analytical solutions in structural optimization. Mech. Des. Struct. Mach. 45(1). doi: 10.1080/15397734.2016.1143374 (2017)
  26. Kruzelecki, J., Zyczkowski, M.: On the concept of an equivalent column in the stability problem of compressed helical springs. Ing.-Archiv. 60, 367–377 (1990)CrossRefGoogle Scholar
  27. Leamy, M.J.: Intrinsic finite element modeling of nonlinear dynamic response in helical springs. In: ASME 2010 International Mechanical Engineering Congress and Exposition Volume 8: Dynamic Systems and Control, Parts A and B, Vancouver, BC, Canada, November 12–18, Paper No. IMECE2010-37434, pp. 857–867; 11. doi: 10.1115/IMECE2010-37434 (2010)
  28. Lee, J.: Free vibration analysis of cylindrical helical springs by the pseudospectral method. J. Sound Vib. 302, 185–196 (2007)CrossRefGoogle Scholar
  29. Lee, J., Thompson, D.J.: Dynamic stiffness formulation, free vibration and wave motion of helical springs. J. Sound Vib. 239, 297–320 (2001)CrossRefGoogle Scholar
  30. Lee, C.-Y., Zhuo, H.-C., Hsu, C.-W.: Lateral vibration of a composite stepped beam consisted of SMA helical spring based on equivalent Euler–Bernoulli beam theory. J. Sound Vib. 324, 179–193 (2009)CrossRefGoogle Scholar
  31. Leung, A.Y.T.: Vibration of thin pre-twisted helical beams. Int. J. Solids Struct. 47, 177–1195 (2010)CrossRefzbMATHGoogle Scholar
  32. Majkut, L.: Free and forced vibrations of timoshenko beams described by single difference equation. J. Theor. Appl. Mech. 47(1), 193–210 (2009)Google Scholar
  33. Michalczyk, K.: Analysis of lateral vibrations of the axially loaded helical spring. J. Theor. Appl. Mech. 53(3), 745–775. doi: 10.15632/Jtam-Pl.53.3.745 (2015)
  34. Ponomarev, S.D.: Stability of helical springs under compression and torsion (in Russian). In: Chudakov, E. A. (ed.) Mashinostr, Vol. 2. Moscow, pp 683–685 (1948)Google Scholar
  35. Ponomarev, S.D., Andreeva, L.E.: Calculation of Elastic Elements of Machines and Instruments. Moscow (1980)Google Scholar
  36. Renno, J.M., Mace, B.R.: Vibration modelling of helical springs with non-uniform ends. J. Sound Vib. 331(12), 2809–2823 (2012)CrossRefGoogle Scholar
  37. Satoh, T., Kunoh, T., Mizuno, M.: Buckling of coiled springs by combined torsion and axial compression. JSME Int. J. Ser. 1(31), 56–62 (1988)Google Scholar
  38. Skoczeń, B., Skrzypek, J.: Application of the equivalent column concept to the stability of axially compressed bellows. Int. J. Mech. Sci. 34(11), 901–916. doi: 10.1016/0020-7403(92)90020-H (1992)
  39. Sorokin, S.V.: Linear dynamics of elastic helical springs: asymptotic analysis of wave propagation. Proc. R. Soc. A. 465, 1513–1537 (2009). doi: 10.1098/rspa.2008.0468 MathSciNetCrossRefzbMATHGoogle Scholar
  40. Stephen, N.G., Puchegger, S.: On the valid frequency range of Timoshenko beam theory. J. Sound Vib. 297, 1082–1087 (2006)CrossRefGoogle Scholar
  41. Tabarrok, B., Xiong, Y.: A spatially curved and twisted rod element for buckling analysis. Int. J. Solids Struct. 29(23), 3011–3023. doi: 10.1016/0020-7683(92)90155-M. ISSN:0020-7683 (1992)
  42. Taktak, M., Dammak, F., Abid, S., Haddar, M.: A finite element for dynamic analysis of a cylindrical isotropic helical spring. J. Mech. Mater. Struct. 3(4), (2008)Google Scholar
  43. Wittrick, W.H.: On elastic wave propagation in helical springs. Int. J. Mech. Sci. 8, 25–47. doi: 10.1016/0020-7403(66)90061-0 (1966)
  44. Yildirim, V.: Free vibration analysis of non-cylindrical coil springs by combined used of the transfer matrix and the complementary functions method. Commun. Numer. Methods Eng. 13, 487–494 (1997)CrossRefzbMATHGoogle Scholar
  45. Yildirim, V.: Expression for predicting fundamental natural frequencies of non-cylindrical helical springs. J. Sound Vib. 252, 479–491 (2002)CrossRefGoogle Scholar
  46. Yildirim, V.: On the linearized disturbance dynamic equations for buckling and free vibration of cylindrical helical coil springs under combined compression and torsion. Meccanica. 47(4), 1015–1033 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  47. Yu, A.M., Yang, C.J., Nie, G.H.: Analytical formulation and evaluation for free vibration of naturally curved and twisted beams. J. Sound Vib. 329, 1376–1389 (2010)CrossRefGoogle Scholar
  48. Yun, A.M., Hao, Y.: Free vibration analysis of cylindrical helical springs with noncircular cross-sections. J. Sound Vib. 330, 2628–2639 (2011)CrossRefGoogle Scholar
  49. Ziegler, H.: Arguments for and against Engesser’s formulas. Ing. Arch. 52, 105–113 (1982)CrossRefzbMATHGoogle Scholar
  50. Ziegler, H., Huber, A.: Zur Knickung der gedrückten und tordierten Schraubenfeder. Z. Angew. Math. Phys. 1, 183–195 (1950)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Vladimir Kobelev
    • 1
  1. 1.Faculty of EngineeringUniversity of SiegenSiegenGermany

Personalised recommendations