Stress Distributions Over Cross-Section of Wires

  • Vladimir Kobelev


The stress distribution over the cross-section wire of helical springs is studied in this chapter. For simplification the pitch of the helical spring is neglected and the traditional representation of one coil as an incomplete torus is used. This model generalizes the Saint-Venant torsion problem of an elliptical straight rod accounting the curvature rod. The closed form solution for the torsion problem of an incomplete torus is discussed.


  1. EN 13906-1:2013-11: Cylindrical Helical Springs Made from Round Wire and Bar – Calculation and Design - Part 1: Compression Springs, German version DIN EN 13906-1:2013 (2013)Google Scholar
  2. Fraeijs de Veubecke, B.M.: A Course in Elasticity. Springer, New York (1979)CrossRefGoogle Scholar
  3. Fuchs, H.O.: High Efficiency Coil Springs with Equalized Stresses. Metal Improvement Equipment Co., Los Angeles (1959)Google Scholar
  4. Göhner, O.: Schubspannungsverteilung im Querschnitt eines gedrillten Ringstabs mit Anwendung auf Schraubenfedern. Ing.-Archiv, Bd. 2, Heft 1:S.1–19 (1932)Google Scholar
  5. Hirth, J.P., Lothe, J.: Theory of Dislocations. Krieger Publishing Company (1991)Google Scholar
  6. Kamiya, N., Kita, E.: Boundary element method for quasi-harmonic differential equation with application to stress analysis and shape optimization of helical spring. Comput. Struct. 37, 81–86 (1990)CrossRefzbMATHGoogle Scholar
  7. Kittel, C.: Introduction to Solid State Physics, 7th edn. Wiley (1996)Google Scholar
  8. Kobelev V.: Weakest link concept for springs fatigue. Mech. Based Des. Struct. Mach. 1–21 (2016)Google Scholar
  9. Kobelev, V.: An exact solution of torsion problem for an incomplete torus with application to helical springs. Meccanica. 37, 269–282 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Köhler, E.: Verbrennungsmotoren: Motorenmechanik, Berechnung und Auslegung des Hubkolbenmotors. Vieweg, Wiesbaden (1998)CrossRefGoogle Scholar
  11. Matsumoto, Y. et al.: Wire for coiled spring. United States, Patent Number 4735403 (1988)Google Scholar
  12. Muhr, T.H.: Zur Konstruktion von Ventilfedern in hochbeanspruchten Verbrennungsmotoren, Ph.D. Thesis. RWTH Aachen, Aachen (1992)Google Scholar
  13. Nagaya, K.: Stress analysis of a cylindrical coil spring of arbitrary cross-section (1st report). Bull. JSME. 29, 1664–1678 (1986)CrossRefGoogle Scholar
  14. Pilgram, M.: Die Berechnung zylindrischer Schraubenfedern. Artilleristische Monatshefte. 79, 80, 81:68–88, 133–156, 221–239 (1913)Google Scholar
  15. Sato, M., et al.: Stress in a coil spring of arbitrary cross-section. Trans. Jpn. Soc. Mech. Eng. 27, 86–88 (1969)Google Scholar
  16. Sneddon, I.N., Berry, D.S.: The classical theory of elasticity. In: Flügge, S. (ed.) Handbuch der Physik, vol. VI, pp. 1–126. Springer, New York (1958)Google Scholar
  17. Spring Design Manual, 2nd edn. SAE International, Warrendale (1996)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Vladimir Kobelev
    • 1
  1. 1.Faculty of EngineeringUniversity of SiegenSiegenGermany

Personalised recommendations