Advertisement

Principles of Spring Design

  • Vladimir Kobelev
Chapter

Abstract

The calculation formulas for linear helical springs with an inconstant wire diameter and with a variable mean diameter of spring are presented. Based on these formulas the optimization of spring for given spring rate and strength of the wire is performed. The design principles for optimal leaf springs are briefly presented.

References

  1. Ashby, M.F., Bréchet, Y.J.M.: Designing hybrid materials. Acta Mater. 51(19), 5801–5821 (2003)CrossRefGoogle Scholar
  2. EN 13906-1:2013-11: Cylindrical Helical Springs Made from Round Wire and Bar – Calculation and Design – Part 1: Compression Springs; German version DIN EN 13906-1:2013 (2013a)Google Scholar
  3. EN 13906-2:2013-09: Cylindrical Helical Springs Made from Round Wire and Bar – Calculation and Design – Part 2: Extension Springs; German version DIN EN 13906-2:2013 (2013b)Google Scholar
  4. EN 13906-3:2014-06: Cylindrical Helical Springs Made from Round Wire and Bar – Calculation and Design – Part 3: Torsion Springs; German version DIN EN 13906-3:2014 (2014)Google Scholar
  5. Fuchs, H.O., et al.: Shortcuts in cumulative damage analysis. In: Fatigue Under Complex Loading. Analyses and Experiments, pp. 145–161. Society of Automotive Engineers, Warrendale, PA (1977)Google Scholar
  6. Gillespie, T.: Fundamentals of Vehicle Dynamics. SAE, Warrendale, PA (1992)CrossRefGoogle Scholar
  7. Göhner, O.: Die Berechnung zylindrischer Schraubenfedern. Zeitschrift des VDI. 76(1932), 269–272 (1932)zbMATHGoogle Scholar
  8. Henrici, P.: On helical springs of finite thickness. Q. Appl. Math. XIII(1), 106–110 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Kruzelecki, J.: Optimal design of helical springs. Mechanika teoretyczna i stosowana. 1–2, 28 (1990)Google Scholar
  10. Landgraf, R.: Cumulative fatigue damage under complex strain histories, ASTM STP 519, cyclic stress-strain behavior. ASTM, 212–227 (1973)Google Scholar
  11. Leiseder, L.: Federelemente aus Stahl für die Automobilindustrie, Bibliothek der Technik, Bd. 140, Verlag Moderne Industrie. ISBN 3-478-93158-4 (1997)Google Scholar
  12. Meissner, M., Schorcht, H.-J., Kletzin, U.: Metallfedern. Springer, Berlin. ISBN:978-3-642-39123-1 (2015)Google Scholar
  13. Michell, J.H.: The uniform torsion and flexure of incomplete torus, with application to helical springs. Proc. Lond. Math. Soc. 31, 130–146 (1899)MathSciNetzbMATHGoogle Scholar
  14. Ponomarev, S.D., Biderman, V.L., Likharev, K.K., Makushin, V.M., Malinin, N.N., Feodos’ev, V.I.: Resistance calculus in construction of machines. Mashgiz Moscow. I, 704–835 (1956)Google Scholar
  15. Shimoseki, M., Hamano, T., Imaizumi, T. (eds.): FEM for Springs. Springer, Berlin. ISBN:978-3-540-00046-4 (2003)Google Scholar
  16. Smith, K.N., Watson, R., Topper, T.H.: A stress-strain function for the fatigue of metals. J. Mater. (JMLSA). 5(4), 767–778 (1970)Google Scholar
  17. Spring Design Manual, 2nd edn. Society of Automotive Engineers, Warrendale, PA (1996)Google Scholar
  18. Teodorescu, P.P.: Treatise on Classical Elasticity. Theory and Related Problems. Springer, Berlin (2013)Google Scholar
  19. Wahl, A.M.: Stresses in heavy closely coiled helical springs. Trans. ASME J. Appl. Mech. 51, 185–200 (1929)Google Scholar
  20. Wargnier, H., Kromm, F.X., Danis, M., Brechet, Y.: Proposal for a multi-material design procedure. Mater. Des. 56, 44–49 (2014)CrossRefGoogle Scholar
  21. WO 2008125076 A1: Leaf Spring Made of a Fiber-Plastic Composite and Force Transmission Element Therefore. European Patent Office, 2008-10-23, Espacenet (2007)Google Scholar
  22. Yamada, Y.: Materials for Springs. Springer, Berlin. ISBN:978-3-540-73811-4 (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Vladimir Kobelev
    • 1
  1. 1.Faculty of EngineeringUniversity of SiegenSiegenGermany

Personalised recommendations