Decision-Making for Adaptive Digital Escape Route Signage Competing with Environmental Cues: Cognitive Tunneling in High-Stress Evacuation Situations

  • Sonja Th. Kwee-Meier
  • Wolfgang Kabuss
  • Alexander Mertens
  • Christopher M. Schlick
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10275)

Abstract

The relationship between stress and cognitive tunneling, i.e. the narrowed attentional focus, is long known. In evacuations, escape route signs have to compete with environmental cues, such as corridor width and lightning. New digital escape route signage can help to guide passengers situation-adequately under dangerous conditions, for instance fires. So far, little is known about the effect of cognitive tunneling on way finding in high-stress evacuation situations and its meaning for the potential to exert influence on direction decisions by digital escape route signage. Therefore, we have conducted an age-differentiated study in a virtual environment of a corridor system with digital escape route signage and competing environmental influences. 60 participants, 30 young (20–30 years) and 30 elderly (60–79 years), made direction decisions in a total of 40 T-intersections in three conditions. There was a low-strain everyday condition and two evacuation conditions with higher mental, emotional and physical demands. Significant differences in direction decisions were found between the everyday and the two evacuation conditions. The participants payed more attention on environmental cues in the everyday situation, while strongly focusing on the visual search for escape route signage in the evacuation conditions, suggesting a pronounced tunneling effect in these high-stress situations.

Keywords

Escape route signage Digital signs Stress Evacuation Emergency Cognitive tunneling Experimental study Age-differentiated 

References

  1. 1.
    Taylor, L., Socov, E.: The movement of people toward lights. J. Illum. Eng. Soc. 3, 237–241 (1974). doi:10.1080/00994480.1974.10732257 CrossRefGoogle Scholar
  2. 2.
    Vilar, E., Rebelo, F., Noriega, P., Duarte, E., Mayhorn, C.B.: Effects of competing environmental variables and signage on route-choices in simulated everyday and emergency way finding situations. Ergonomics 57(4), 511–524 (2014). doi:10.1080/00140139.2014.895054 CrossRefGoogle Scholar
  3. 3.
    Conroy-Dalton, R.: The secret is to follow your nose: route path selection and angularity. Environ. Behav. 35(1), 107–131 (2003). doi:10.1177/0013916502238867 CrossRefGoogle Scholar
  4. 4.
    Hochmair, H., Frank, A.: Influence of estimation errors on way finding decisions in unknown street networks – analyzing the least-angle strategy. Spatial Cogn. Comput. 2, 283–313 (2000). doi:10.1023/A:1015566423907 Google Scholar
  5. 5.
    Mawson, A.R.: Panic behavior: a review and a new hypothesis. In: Paper Presented at the 9th World Congress of Sociology. Doubleday, Doran and Company, York (1978)Google Scholar
  6. 6.
    Mawson, A.R.: Is the concept of panic useful for scientific purposes? Behavior in fires. In: Proceedings of the Second International Seminar on Behavior in Fire Emergencies. NBS Report NBSIR-802070. U.S. Department of Commerce, Washington, DC (1980)Google Scholar
  7. 7.
    Sime, J.D.: Affiliative behaviour during escape to building exits. J. Environ. Psychol. 3(1), 21–41 (1983). doi:10.1016/S0272-4944(83)80019-X CrossRefGoogle Scholar
  8. 8.
    Sime, J.D.: Movement toward the familiar person and place affiliation in a fire entrapment setting. Environ. Behav. 17(6), 697–724 (1985). doi:10.1177/0013916585176003 CrossRefGoogle Scholar
  9. 9.
    Deutsch, M., Gerard, H.B.: A study of normative and informational social influences upon individual judgment. J. Abnorm. Soc. Psychol. 51(3), 629–636 (1955). doi:10.1037/h0046408 CrossRefGoogle Scholar
  10. 10.
    Nilsson, D., Johansson, M., Frantzich, H.: Evacuation experiment in a road tunnel: a study of human behaviour and technical installations. Fire Saf. J. 44(4), 458–468 (2009). doi:10.1016/j.firesaf.2008.09.009 CrossRefGoogle Scholar
  11. 11.
    Kinateder, M., Ronchi, E., Gromer, D., Müller, M., Jost, M., Nehfischer, M., Mühlberger, A., Pauli, P.: Social influence on route choice in a virtual reality tunnel fire. Transp. Res. Part F Traffic Psychol. Behav. 6, 116–125 (2014). doi:10.1016/j.trf.2014.06.003 CrossRefGoogle Scholar
  12. 12.
    Butcher, E.G., Parnell, A.C.: Designing for Fire Safety. Wiley, Hoboken (1983)Google Scholar
  13. 13.
    Shields, T.J., Boyce, K.: A study of evacuation from large retail stores. Fire Saf. J. 35(1), 25–49 (2000). doi:10.1016/S0379-7112(00)00013-8 CrossRefGoogle Scholar
  14. 14.
    Alhakami, A.S., Slovic, P.: A psychological study of the inverse relationship between perceived risk and perceived benefit. Risk Anal. 14(6), 1085–1096 (1994). doi:10.1111/j.1539-6924.1994.tb00080.x CrossRefGoogle Scholar
  15. 15.
    Peters, E., Slovic, P.: The role of affect and worldviews as orienting dispositions in the perception and acceptance of nuclear Power1. J. Appl. Soc. Psychol. 26(16), 1427–1453 (1996). doi:10.1111/j.1559-1816.1996.tb00079.x CrossRefGoogle Scholar
  16. 16.
    Slovic, P.: Trust, emotion, sex, politics, and science: surveying the risk assessment battlefield. Risk Anal. 19(4), 689–701 (1999). doi:10.1111/j.1539-6924.1999.tb00439.x Google Scholar
  17. 17.
    Finucane, M., Alhakami, A., Slovic, P., Johnson, S.: The affect heuristic in judgments of risks and benefits. J. Behav. Decis. Making 13(1), 1–17 (2000)CrossRefGoogle Scholar
  18. 18.
    Keinan, G., Friedland, N., Ben-Porath, Y.: Decision making under stress: scanning of alternatives under physical threat. Acta Psychol. 64(3), 219–228 (1987). doi:10.1016/0001-6918(87)90008-4 CrossRefGoogle Scholar
  19. 19.
    Stankovic, A., Aitken, M.R., Clark, L.: An eye-tracking study of information sampling and decision-making under stress implications for alarms in aviation emergencies. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting 58, pp. 125–129 (2014)Google Scholar
  20. 20.
    Easterbrook, J.A.: The effect of emotion on cue utilization and the organization of behavior. Psychol. Rev. 66(3), 183–201 (1959). doi:10.1037/h0047707 CrossRefGoogle Scholar
  21. 21.
    Yeh, M., Wickens, C.D.: Display signaling in augmented reality: effects of cue reliability and image realism on attention allocation and trust calibration. Hum. Factors 43(3), 355–365 (2001). doi:10.1518/001872001775898269 CrossRefGoogle Scholar
  22. 22.
    Briggs, G.F., Hole, G.J., Land, M.F.: Emotionally involving telephone conversations lead to driver error and visual tunneling. Transp. Res. Part F Traffic Psychol. Behav. 14(4), 313–323 (2011). doi:10.1016/j.trf.2011.02.004 CrossRefGoogle Scholar
  23. 23.
    Horrey, W.J., Wickens, C.D., Consalus, K.P.: Modeling drivers’ visual attention allocation while interacting with in-vehicle technologies. J. Exp. Psychol. 12(2), 67–78 (2006). doi:10.1037/1076-898X.12.2.67 Google Scholar
  24. 24.
    Dixon, B.J., Daly, M.J., Chan, H., Vescan, A.D., Witterick, I.J., Irish, J.C.: Surgeons blinded by enhanced navigation: the effect of augmented reality on attention. Surg. Endosc. 27(2), 454–461 (2013). doi:10.1007/s00464-012-2457-3 CrossRefGoogle Scholar
  25. 25.
    Mack, A., Rock, I.: Inattentional Blindness. MIT Press, Cambridge, Massachusetts (1998)Google Scholar
  26. 26.
    Simons, D.J., Chabris, C.F.: Gorillas in our midst: sustained inattentional blindness for dynamic events. Perception 28(9), 1059–1074 (1999). doi:10.1068/p281059 CrossRefGoogle Scholar
  27. 27.
    Vilar, E., Rebelo, F., Noriega, P., Teles, J., Mayhorn, C.: Signage versus environmental affordances: is the explicit information strong enough to guide human behavior during a way finding task? Hum. Factors Ergon. Manufact. Serv. Indus. 25(4), 439–452 (2015). doi:10.1002/hfm.20557 CrossRefGoogle Scholar
  28. 28.
    Yerkes, R.M., Dodson, J.: The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. Psychol. 18(5), 459–482 (1908). doi:10.1002/cne.920180503 CrossRefGoogle Scholar
  29. 29.
    Wickens, C.D., Hollands, J.G., Banbury, S., Parasuraman, R.: Engineering Psychology and Human Performance. Pearson Education, Upper Saddle River (2013)Google Scholar
  30. 30.
    Kwee-Meier, S., Mertens, A., Schlick, C.: Age-related differences in decision-making for digital escape route signage under strenuous emergency conditions of tilted passenger ships. Appl. Ergon. 59(A), 264–273 (2017). doi:10.1016/j.apergo.2016.09.001 CrossRefGoogle Scholar
  31. 31.
    Duncan, C.C., Barry, R.J., Connolly, J.F., Fischer, C., Michie, P.T., Näätänen, R., Polich, J., Reinvang, I., Petten, C.V.: Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin. Neurophysiol. 120(11), 1883–1908 (2009). doi:10.1016/j.clinph.2009.07.045 CrossRefGoogle Scholar
  32. 32.
    ISO 7010:2011(E) Graphical symbols – Safety colours and safety signs – Registered safety signsGoogle Scholar
  33. 33.
    Thompson, P., Beath, T., Bell, J., Jacobson, G., Phair, T., Salbach, N.M., Wright, F.V.: Test-retest reliability of the 10-metre fast walk test and 6-minute walk test in ambulatory school-aged children with cerebral palsy. Dev. Med. Child Neurol. 50(5), 370–376 (2008). doi:10.1111/j.1469-8749.2008.02048.x CrossRefGoogle Scholar
  34. 34.
    Bohannon, R.W.: Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age Ageing 26(1), 15–19 (1997). doi:10.1093/ageing/26.1.15 CrossRefGoogle Scholar
  35. 35.
    International Maritime Organization (IMO): Guidelines for a evacuation analysis for new and existing passenger ships. MSC.1/Circ.1238, 30th October 2007, London (2007)Google Scholar
  36. 36.
    Bohannon, R.W., Andrews, A.W., Thomas, M.W.: Walking speed: reference values and correlates for older adults. J. Orthop. Sports Phys. Ther. 24(2), 86–90 (1996). doi:10.2519/jospt.1996.24.2.86 CrossRefGoogle Scholar
  37. 37.
    Watson, M.J.: Refining the Ten-metre walking test for use with neurologically impaired people. Physiotherapy 88(7), 386–397 (2002). doi:10.1016/S0031-9406(05)61264-3 CrossRefGoogle Scholar
  38. 38.
    Field, A.: Discovering Statistics Using IBM SPSS Statistics. Sage, Los Angeles, London, New Delhi, Singapur und Washington, D.C (2009)Google Scholar
  39. 39.
    Porcelli, A.J., Delgado, M.R.: Acute stress modulates risk taking in financial decision making. Psychol. Sci. 20(3), 278–283 (2009). doi:10.1111/j.1467-9280.2009.02288.x CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sonja Th. Kwee-Meier
    • 1
  • Wolfgang Kabuss
    • 1
  • Alexander Mertens
    • 1
  • Christopher M. Schlick
    • 1
  1. 1.Institute of Industrial Engineering and ErgonomicsRWTH Aachen UniversityAachenGermany

Personalised recommendations