Building and Processing a Knowledge-Graph for Legal Data

  • Erwin FiltzEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10250)


The increasing size and availability of data opens the door for new application areas. Data which has previously been kept separated can be linked and therefore enhanced with additional data from other sources. The linking of data requires a certain data representation such that it can be used in particular domains. In this paper we describe the problem of data representation and search within data exemplified by the legal domain. We propose an approach to represent the legal data (legal norms and court decisions) of Austria and show how this data can be used to build a legal knowledge graph, usable in various applications for lawyers, attorneys, citizens or journalists.



This thesis is supervised by Axel Polleres and funded by the Austrian Research Association (FFG) under the scope of ICT of the Future program (contracts # 849906 and # 855396).


  1. 1.
    Amato, F., Mazzeo, A., Penta, A., Picariello, A.: Building RDF ontologies from semi-structured legal documents. In: 2008 International Conference on Complex, Intelligent and Software Intensive Systems (2008)Google Scholar
  2. 2.
    Athan, T., Boley, H., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.: OASIS LegalRuleML. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Law, ICAIL 2013, pp. 3–12. ACM, New York (2013).
  3. 3.
    Bauer, S.: Evaluation of search engines in the context of RIS. Master’s thesis, Vienna University of Economics and Business, Vienna, Austria (2016)Google Scholar
  4. 4.
    Benjamins, V.R., Casanovas, P., Breuker, J., Gangemi, A.: Law and the semantic web, an introduction. In: Benjamins, V.R., Casanovas, P., Breuker, J., Gangemi, A. (eds.) Law and the Semantic Web. LNCS (LNAI), vol. 3369, pp. 1–17. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-32253-5_1CrossRefGoogle Scholar
  5. 5.
    Biagioli, C., Francesconi, E., Passerini, A., Montemagni, S., Soria, C.: Automatic semantics extraction in law documents. In: Proceedings of the 10th International Conference on Artificial Intelligence and Law, ICAIL 2005, pp. 133–140. ACM, New York (2005).
  6. 6.
    Boer, A., van Engers, T., Winkels, R.: Using ontologies for comparing and harmonizing legislation. In: Proceedings of the 9th International Conference on Artificial Intelligence and Law, pp. 60–69. ACM (2003)Google Scholar
  7. 7.
    Boer, A., Hoekstra, R., Winkels, R., van Engers, T., Willaert, F.: Proposal for a Dutch legal XML standard. In: Traunmüller, R., Lenk, K. (eds.) EGOV 2002. LNCS, vol. 2456, pp. 142–149. Springer, Heidelberg (2002). doi: 10.1007/978-3-540-46138-8_22CrossRefGoogle Scholar
  8. 8.
    Boer, A., Hoekstra, R., Winkels, R., Van Engers, T., Willaert, F.: Metalex: legislation in XML. In: Legal Knowledge and Information Systems (Jurix 2002), pp. 1–10 (2002)Google Scholar
  9. 9.
    Boer, A., Winkels, R., Vitali, F.: MetaLex XML and the legal knowledge interchange format. In: Casanovas, P., Sartor, G., Casellas, N., Rubino, R. (eds.) Computable Models of the Law. LNCS (LNAI), vol. 4884, pp. 21–41. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85569-9_2CrossRefGoogle Scholar
  10. 10.
    Bonstrom, V., Hinze, A., Schweppe, H.: Storing RDF as a graph. In: Proceedings of the IEEE/LEOS 3rd International Conference on Numerical Simulation of Semiconductor Optoelectronic Devices (IEEE Cat. No.03EX726), pp. 27–36, November 2003Google Scholar
  11. 11.
    Breuker, J., Casanovas, P., Klein, M.A.C., Francesconi, E.: The flood, the channels and the dykes: managing legal information in a globalized and digital world. In: Law, Ontologies and the Semantic Web: Channelling the Legal Information Flood, vol. 188, p. 3 (2009)Google Scholar
  12. 12.
    Checkland, P., Holwell, S.: Action research: its nature and validity. Syst. Pract. Action Res. 11(1), 9–21 (1998). Scholar
  13. 13.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959). Scholar
  14. 14.
    Drumond, L., Girardi, R.: A multi-agent legal recommender system. Artif. Intell. Law 16(2), 175–207 (2008). Scholar
  15. 15.
    Ebenhoch, M.P.: Legal knowledge representation using the resource description framework (RDF). In: 12th International Workshop on Database and Expert Systems Applications, pp. 369–373 (2001)Google Scholar
  16. 16.
    Eppstein, D.: Finding the k shortest paths. SIAM J. Comput. 28(2), 652–673 (1999). Scholar
  17. 17.
    Filtz, E., Savenkov, V., Umbrich, J.: On finding the k shortest paths in RDF data. In: Proceedings of the 5th International Workshop on Intelligent Exploration of Semantic Data (IESD 2016) co-located with the 15th International Semantic Web Conference (ISWC 2016), 18 October 2016, Kobe, Japan (2016)Google Scholar
  18. 18.
    Gangemi, A.: Design patterns for legal ontology constructions. In: LOAIT 2007, pp. 65–85 (2007)Google Scholar
  19. 19.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  20. 20.
    Haslhofer, B., Karl, R., Filtz, E.: O bitcoin where art thou? Insight into large-scale transaction graphs. In: Martin, M., Cuquet, M., Folmer, E. (eds.) Joint Proceedings of the Posters and Demos Track of the 12th International Conference on Semantic Systems - SEMANTiCS2016 and the 1st International Workshop on Semantic Change & Evolving Semantics (SuCCESS 2016) co-located with the 12th International Conference on Semantic Systems (SEMANTiCS 2016), 12–15 September 2016, Leipzig, Germany. CEUR Workshop Proceedings, vol. 1695. (2016).
  21. 21.
    Hoekstra, R., Breuker, J., Di Bello, M., Boer, A., et al.: The LKIF core ontology of basic legal concepts. In: LOAIT, vol. 321, pp. 43–63 (2007)Google Scholar
  22. 22.
    Hulpus, I., Hayes, C., Karnstedt, M., Greene, D.: Unsupervised graph-based topic labelling using DBPedia. In: Leonardi, S., Panconesi, A., Ferragina, P., Gionis, A. (eds.) Sixth ACM International Conference on Web Search and Data Mining, WSDM 2013, 4–8 February 2013, Rome, Italy, pp. 465–474. ACM (2013).
  23. 23.
    Lenci, A., Montemagni, S., Pirrelli, V., Venturi, G.: Ontology learning from Italian legal texts. In: Proceedings of the 2009 Conference on Law, Ontologies and the Semantic Web: Channelling the Legal Information Flood, pp. 75–94. IOS Press, Amsterdam (2009).
  24. 24.
    McClure, J.: The legal-RDF ontology. A generic model for legal documents. In: LOAIT, pp. 25–42 (2007)Google Scholar
  25. 25.
    Mimouni, N., Nazarenko, A., Paul, E., Salotti, S.: Towards graph-based and semantic search in legal information access systems. In: Twenty-Seventh Annual Conference on Legal Knowledge and Information Systems (JURIX 2014), pp. 163–168. Jagiellonian University, Krakow, Poland, December 2014.
  26. 26.
    Rodríguez-Doncel, V., Villata, S., Gómez-Pérez, A.: A dataset of RDF licenses. In: Hoekstra, R. (ed.) Legal Knowledge and Information Systems - JURIX 2014: The Twenty-Seventh Annual Conference, Jagiellonian University, Krakow, Poland, 10–12 December 2014. Frontiers in Artificial Intelligence and Applications, vol. 271, pp. 187–188. IOS Press (2014).
  27. 27.
    Ruchansky, N., Bonchi, F., García-Soriano, D., Gullo, F., Kourtellis, N.: The minimum Wiener connector problem. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia, 31 May – 4 June 2015, pp. 1587–1602 (2015).
  28. 28.
    Saias, J., Quaresma, P.: Semantic enrichment of a web legal information retrieval system. In: JURIX, pp. 11–20 (2002)Google Scholar
  29. 29.
    Valente, A.: Types and roles of legal ontologies. In: Benjamins, V.R., Casanovas, P., Breuker, J., Gangemi, A. (eds.) Law and the Semantic Web. LNCS (LNAI), vol. 3369, pp. 65–76. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-32253-5_5CrossRefGoogle Scholar
  30. 30.
    Winkels, R., Boer, A., Hoekstra, R., et al.: Metalex: an XML standard for legal documents. In: Proceedings of the XML Europe Conference, London, UK (2003)Google Scholar
  31. 31.
    Winkels, R., Boer, A., Hoekstra, R.: CLIME: lessons learned in legal information serving. In: ECAI 2002: 15th European Conference on Artificial Intelligence, 21–26 July 2002, Lyon France: Including Prestigious Applications of Intelligent Systems (PAIS 2002): Proceedings, vol. 77, p. 230. IOS Press (2002)Google Scholar
  32. 32.
    Winkels, R., Boer, A., de Maat, E., van Engers, T., Breebaart, M., Melger, H.: Constructing a semantic network for legal content. In: Proceedings of the 10th International Conference on Artificial Intelligence and Law, ICAIL 2005, pp. 125–132. ACM, New York (2005).
  33. 33.
    Winkels, R., Boer, A., Vredebregt, B., van Someren, A.: Towards a legal recommender system. In: JURIX, pp. 169–178 (2014)Google Scholar
  34. 34.
    Zeleznikow, J., Belluci, E.: Family-Winner: integrating game theory and heuristics to provide negotiation support. In: Legal Knowledge and Information Systems: JURIX 2003: The Sixteenth Annual Conference, p. 21. IOS Press (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute for Information BusinessVienna University of Economics and BusinessViennaAustria

Personalised recommendations