Advertisement

Modifiers and Fillers

  • Dallas N. LittleEmail author
  • David H. Allen
  • Amit Bhasin
Chapter

Abstract

This chapter presents a summary of how fillers (active and inert) impact the rheological properties of asphalt binders including adding stiffness and fracture toughness due to their ability to adsorb energy by “crack pinning” mechanisms and diffusion of crack growth. Active fillers such as hydrated lime are somewhat compatible with the acids within asphalt binder and can sorb components from the asphalt, such as carboxylic acids to form an interlayer between the hydrated lime and the asphalt. The net result of this interaction is to improve the asphalt–aggregate bond and to magnify the volume filler effect such that the active filler has a substantially greater rheological impact than equal volume of inert filler. This chapter summarizes key research by Lesueur (2009) to describe a colloidal picture of the asphalt microstructure. Lesueur explains that such suspensions can be viewed as special cases of emulsions and, in certain cases, as a suspension of viscoelastic solids in a viscoelastic matrix. This chapter addresses polymer stabilization of asphalt binders by adding both plastomers and elastomers to the asphalt binder. A fundamental explanation of how such polymer additives interact with asphalt binder is used to explain the practical implications of polymer modification and how relatively low additive amounts of polymer by weigh of asphalt binder can result in an inverted matrix, where the swollen polymer additive forms a continuous matrix within the polymer–asphalt blend. The use of elemental sulfur, a by-product of gas and petroleum de-sulfuring and available in large quantities throughout much of the industrialized world, is addressed as an asphalt extender and stiffener.

Keywords

Modifiers Extenders Adhesion-promoting agents Acid modification Active fillers Hydrated lime Polymers Plastomers Elastomers Palierne model 

References

  1. Airey, G. G. (2002). Rheological evaluation of ethylene vinyl acetate polymer modified bitumens. Construction and Building Materials, 16(8).Google Scholar
  2. Allen, R. G., Little, D. N., & Bhasin, A. (2012). Structural characterization of micromechanical properties in asphalt using atomic force microscopy. Journal of Materials in Civil Engineering, 24, 1317–1327.CrossRefGoogle Scholar
  3. Anderson, D. A. (1996). Influence of fines on performance of asphalt concrete mixtures. In Proceedings of the 4th Annual Symposium, International Center for Aggregates Research, Atlanta.Google Scholar
  4. Ardebrant, H., & Pugh, R. J. (1991a). Surface acidity/basicity of road stone aggregates by adsorption from non-aqueous solutions. Colloids and Surfaces, 53, 101–116.CrossRefGoogle Scholar
  5. Ardebrant, H., & Pugh, R. J. (1991b). Wetting studies on silicate minerals and rocks used in bitumen highways. Colloids and Surfaces, 58, 111–130.CrossRefGoogle Scholar
  6. Bahia, H. U., Anderson, D. A., & Christensen, D. W. (1992). The bending beam rheometer: A simple device for measuring low- temperature rheology of asphalt binders. Asphalt Paving Technologists, 61, 117–148.Google Scholar
  7. Baumgardner, G. L., Masson, J. F., & Hardee, J. R. (2005). Polyphosphoric acid modified asphalt: Proposed mechanisms. Journal of Association of Asphalt Paving Technologists, 74, 283–305.Google Scholar
  8. Bhairampally, R. K., Lytton, R. L., & Little, D. N. (2002). A numerical and graphical method to assess permanent deformation potential for repeated compressive loading of asphalt mixtures. Transportation Research Record 1723 (pp. 150–158), Transportation Research Board, Washington, D.C.Google Scholar
  9. Blazek, J., Sebor, G., Maxa, D., Ajib, M., & Paniagua, H. (2000). Effect of hydrated lime addition on properties of asphalt. Petroleum and Coal, 42(1), 41–45.Google Scholar
  10. Brahimi, B., Ait-Kadi, A., Ajji, A., Jérôme, R., & Fayt, R. (1991). Rheological properties of copolymer modified polyethylene/polystyrene blends. Journal of Rheology.Google Scholar
  11. Branthaver, J. F. J., et al. (1993). Binder characterization and evaluation, Volume 2: Chemistry. Report SHRP-A-368, Strategic Highway Re- search Program, Washington, D.C.Google Scholar
  12. Brion, Y., & Brule, B. (1986). Etudes des melanges bitumes-polymeres—composition—structure—proprieties. Transportation Research Board: Monograph, ISBN: 2-7208-3535-8. [French].Google Scholar
  13. Brule, B. (1996). Polymer-modified asphalt cements used in the road construction industry: Basic principles. Transportation Research Record, 1535 (pp. 48–53), Transportation Research Board, Washington, D.C.Google Scholar
  14. Buttlar, W. G., Bozkurt, D., A-Khateeb, G. G., & Waldorf, A. S. (1999). Understanding asphalt mastic behavior through micromechanics. In Proceedings of the Annual Meeting, Transportation Research Board, Washington, D.C.Google Scholar
  15. Champion-Lapalu, L., Planche, J.-P., Maúin, D., Anderson, D. A., & Gerard, J.-F. (2000). 101 low-temperature rheological and fracture properties of polymer-modified bitumens. In Proceedings, 2nd Eurasphalt and Eurobitume Congress, Barcelona, Book I.Google Scholar
  16. Chen, J. S., Liao, M. C., & Shiah, M. S. (2002). Asphalt modified by styrene-butadiene-styrene triblock copolymer: Morphology and model. Journal of Materials in Civil Engineering, 14(3).Google Scholar
  17. Claudy, P., Létoffé, J. M., King, G. N., & Planche, J. P. (1992). Characterization of asphalts cements by thermomicroscopy and differential scanning calorimetry: Correlation to classic physical properties. Fuel Science and Technology International, 10, 735–765.CrossRefGoogle Scholar
  18. Coussot, P. (2005). Rheometry of pastes, suspensions and granular materials. New York: Wiley and Sons.CrossRefGoogle Scholar
  19. Craus, J., Ishai, I., & Sides, A. (1978). Some physico-chemical aspects of the effect and the role of the filler in bituminous paving mixtures. In Proceedings of the Association of Asphalt Paving Technologists (Vol. 47, pp. 558–588).Google Scholar
  20. CROW. (2007). (Centrum voor Regelgeving en Onderzoek in de Grond-, Water- en Wegenbouw en de Ver- keerstechniek – Dutch technology platform for transport, infrastructure and public space), Deelhoofdstuk 31.2 Asfaltverhardingen, Ede (The Netherlands), CROW (in Dutch).Google Scholar
  21. Curtis, C. W., Ensley, K., & Epps, J. (1993). Fundamental properties of asphalt-aggregate interactions including adhesion and absorption (SHRP Report No. A-341). Washington, DC: National Research Council.Google Scholar
  22. Elder, A. C., Hatting, M. M., Servas, V. P., & Marais, C. P. (1985). Use of aging tests to determine the efficiency of hydrated lime additions to asphalt in retarding its oxidative hardening. In Proceedings of the Association of Asphalt Paving Technologists (Vol. 54, pp. 118–139).Google Scholar
  23. Eulitz, H.-J., Schellenberg, K., Ritter, H.-J., & Schmidt, S.-O. (1998). Verbesserung von Asphalteigen- schaften durch Zugabe von Kalkhydrat (Report No. 2/98/B005). Köln: Forschungsgemeinschaft Kalk und Mörtel e. V (in German).Google Scholar
  24. Gawel, I., & Baginska, K. (2004). Effect of chemical nature on susceptibility of asphalt to aging. Petroleum Science and Technology, 22, 1261–1271.CrossRefGoogle Scholar
  25. Gawrys, K. L., & Kilpatrick, P. K. (2005). Asphaltenic aggregates are polydisperse oblate cylinders. Journal of Colloid and Interface Science, 288(2), 325–334.CrossRefGoogle Scholar
  26. Griffith, A. A. (1921). The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London, Series A, 221, 163–198.CrossRefGoogle Scholar
  27. Hefer, A., & Little, D. N. (2005). Adhesion in Bitumen-Aggregate Systems and Quantification of the effects of Water on the Adhesive Bond. Research Report ICAR-505-1.Google Scholar
  28. Hefer, A. W., Little, D. N., & Lytton, R. L. (2005). A synthesis of theories and mechanisms of bitumen-aggregate adhesion including recent advances in quantifying the effects of water. In Proceedings of the Association of Asphalt Paving Technologists (Vol. 74).Google Scholar
  29. Heukelom, W., & Wija, P. W. O. (1971). Viscosity of dispersions governed by concentration and rate of shear. Asphalt Paving Technologists, 40.Google Scholar
  30. Hicks, R. G. (1991). NCHRP synthesis of highway practice 175: Moisture damage in asphalt concrete. Washington, DC: Transportation Research Board.Google Scholar
  31. Hicks, R. G., & Scholz, T. V. (2003). Life cycle costs for lime in hot mix asphalt (Vol. 3). Arlington, VA: National Lime Association. Retrieved from http://www.lime.org/LCCA/LCCA_Vol_I.pdf, http://www.lime.org/LCCA/LCCA_Vol_II.pdf, http://www.lime.org/LCCA/LCCA_Vol_III.pdf.
  32. Hoffman, P., van Veldhuizen, M., Noor, H., & Smits, R. (1998). Hydroxide in filler, Netherlands Pavement Consultants, Utrecht, The Netherlands.Google Scholar
  33. Hopman, P. C., Vanelstraete, A., Verhasselt, A., & Walter, D. (1999, May). Effects of hydrated lime on the behaviour of mastics and on their construction ageing. In Proceedings of the 5th International Conference on Durable and Safe Road Pavements (Vol. 1, pp. 59–68). Warsaw, Poland: Polish Road and Bridge Research Institute.Google Scholar
  34. Huang, S. C., Robertson, R. E., Branthaver, J. F., & Petersen, J. C. (2005). Impact of lime modification of asphalt and freeze-thaw cycling on the asphalt-aggregate interaction and moisture resistance to moisture damage. Journal of Materials in Civil Engineering, 17(6), 711–718.CrossRefGoogle Scholar
  35. Johansson, L. S. (1998). Bitumen aging and hydrated lime. Report TRITA-IP FR 98-38, Royal Institute of Technology, Stockholm, Sweden.Google Scholar
  36. Johansson, L. S., Branthaver, J., & Robertson, R. (1995). A study of rheological properties of lime treated paving asphalts aged at 60 °C in a pressure aging vessel. Fuel Science and Technology International, 13(10), 1317–1343.CrossRefGoogle Scholar
  37. Johansson, L. S., Branthaver, J., & Robertson, R. (1996). The influence of metal-containing compounds on enhancement and inhibition of asphalt oxidation. Fuel Science and Technology International, 14(8), 1143–1159.CrossRefGoogle Scholar
  38. Johansson, L. S., & Isacsson, U. (1996). Influence of testing conditions on the capacity of hydrated lime to inhibit bitumen aging, Division of Highway Engineering, Royal Institute of Technology, Stockholm, Sweden.Google Scholar
  39. Johansson, L. S., & Isacsson, U. (1998). Effect of filler on low temperature physical hardening of bitumen. Construction Building Materials, 12, 463–470.CrossRefGoogle Scholar
  40. Khattak, M. J., & Kyatham, V. (2008). Viscoelastic behavior of hydrated lime-modified asphalt matrix and hot-mix asphalt under moisture damage conditions. Transportation Research Record, 2057, 64–74.CrossRefGoogle Scholar
  41. Kim, Y.-R., Little, D. N., & Song, I. (2003). Mechanistic evaluation of mineral fillers on fatigue resistance and fundamental material characteristics. In Proceedings of the 82nd Transportation Research Board Meeting, Transportation Research Board, Washington, D.C.Google Scholar
  42. Koots, J. A., & Speight, J. G. (1975). Relation of petroleum resins to asphaltenes. Fuel, 54, 179–184.CrossRefGoogle Scholar
  43. Lackner, R., Spiegl, M., Blab, R., & Eberhardsteiner, J. (2005). Is low-temperature creep of asphalt mastic independent of filler shape and mineralogy? Arguments from multiscale analysis. Journal of Materials in Civil Engineering, 17(5), 485–491.CrossRefGoogle Scholar
  44. Landau, L. D., & Lifshitz, E. M. (1958). Fluid mechanics (1st English ed.). London: Pergamon Press.Google Scholar
  45. Laval, C., & Quivoron, C. (1973). Mise en évidence d’une corrélation entre le rapport hydrophile/lipophile des résines époxydes et leur compatibilité avec le bitume routier. Comptes rendus de l’Académie des Sciences IIc, 256, 743–746.Google Scholar
  46. Laval C., & Brûlé B. (1974). Etude expérimentale de la compatibilité de résines epoxydes avec le bitume. Application à la prévision de systèmes compatibles. Rapport de Recherche LCPC 40, LCPC Eds, Paris (France). [French].Google Scholar
  47. Lesueur, D., Dekker, D. L., & Planche, J. P. (1995). Comparison of carbon black from pyrolized tires to other fillers as asphalt rheology modifiers. Transportation Research Record, 1515 (pp. 47–55), Transportation Research Board, Washington, D.C.Google Scholar
  48. Lesueur, D., Gerard, J. F., Claudy, P., Letoffe, J. M., Planche, J. P., & Martin, D. (1996). A structure-related model to describe asphalt linear viscoelasticity. Journal of Rheology, 40, 813–836.CrossRefGoogle Scholar
  49. Lesueur, D., Gerard, J. F., Claudy, P., Letoffe, J. M., Planche, J. P., & Martin, D. (1997). Relationships between the structure and the mechanical properties of paving grade asphalt cements. Proceedings of the Association of Asphalt Paving Technologists, 66, 486–519.Google Scholar
  50. Lesueur, D., Gerard, J. F., Claudy, P., Letoffe, J. M., Planche, J. P., & Martin, D. (1998). Polymer modified asphalts as viscoelastic emulsions. Journal of Rheology, 42, 1059–1074.CrossRefGoogle Scholar
  51. Lesueur, D., & Little, D. N. (1999). “Effect of hydrated lime on rheology, fracture, and aging of bitumen. Transportation Research Record, 1661 (pp. 93–105), Transportation Research Board, Washington, D.C.Google Scholar
  52. Lesueur, D. (2009). The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145, 42–82.CrossRefGoogle Scholar
  53. Lesueur, D. (2010). Hydrated lime: A proven additive for durable asphalt pavements—Critical literature review. Brussels: European Lime Association (EuLA). Retrieved from http://www.eula.eu.
  54. Lesueur, D., Petit, J., & Ritter, H.-J. (2012). Increasing the durability of asphalt mixtures by hydrated lime addition: What evidence? European Roads Review, 20, 48–55.Google Scholar
  55. Lesueur, D., Petit, J., & Ritter, H. J. (2013). The mechanisms of hydrated lime modification of asphalt mixtures: A state-of-the-art review. Road Materials and Pavement Design, 14(1), 1–16.CrossRefGoogle Scholar
  56. Lewis, T. B., & Nielsen, L. E. (1968). Viscosity of dispersed and aggregated suspensions of spheres. Transactions. Society of Rheology, 12, 421–443.CrossRefGoogle Scholar
  57. Li, Y., Li, L., Zhang, Y., Zhao, S., Xie, L., & Yao, S. (2010). Improving the aging resistance of styrene-butadiene-styrene tri-block copolymer and application in polymer-modified asphalt. Journal of Applied Polymer Science, 116, 754–761. doi: 10.1002/app.31458.CrossRefGoogle Scholar
  58. Little, D. N. (1995). Handbook for stabilization of pavement subgrades and base courses with lime. Dubuque, IA: Kendall/Hunt Publishing Company.Google Scholar
  59. Little, D. N. (1996). Hydrated lime as a multi-functional modifier for asphalt mixtures. In Proceedings of the European Seminar, Lhoist Group, Brussels, Belgium.Google Scholar
  60. Little, D. N., & Epps, J. A. (2001). The Benefits of hydrated lime in hot mix asphalt. Arlington, VA: National Lime Association. Retrieved from http://www.lime.org/ABenefit.pdf.
  61. Little, D. N., Lytton, R. L., Williams, D., & Chen, W. (2001). Microdamage healing in asphalt and asphalt concrete. Volume I: Project summary report. FHWA-RD-98-141, Federal Highway Administration, Washington, D.C.Google Scholar
  62. Little, D. N., & Petersen, J. C. (2005). Unique effects of hydrated lime filler on the performance-related properties of asphalt cements: Physical and chemical interactions revisited. Journal of Materials in Civil Engineering, 17(2), 207–218.CrossRefGoogle Scholar
  63. Logaraj, S. (2002). Chemistry of asphalt-aggregate interaction—Influence of additives. Presented at the Moisture Damage Symposium, Laramie, Wyoming.Google Scholar
  64. Lytton, R. L., Uzan, J., Fernando, E. G., Roque, R., Hiltunen, D., & Stoffels, S. M. (1993). Development and validation of performance prediction model and specifications for asphalt binders and paving mixes. Report SHRP-A-357, Strategic Highway Research Program, Washington, D.C.Google Scholar
  65. Mitchell, J. C., & Lee, A. R. (1939). The evaluation of fillers for tar and other bituminous surfaces. Journal of the Society of Chemical Industry, 58, 299–306.Google Scholar
  66. Mohammad, L., Abadie, C., Gokmen, R., & Puppala, A. (2000). Mechanistic evaluation of hydrated lime in hot-mix asphalt mixtures. Transportation Research Record 1723 (pp. 26–36), Transportation Research Board, Washington, D.C.Google Scholar
  67. Mohammad, L. N., Saadeh, S., Kabir, M., & Othman, A. (2008). Mechanistic properties of hot-mix asphalt mixtures containing hydrated lime. Transportation Research Record, 2051, 49–63.CrossRefGoogle Scholar
  68. Nielsen, L. E. (1970). Generalized equation for the elastic moduli of composite materials. Journal of Applied Physics, 41, 4626–4627.CrossRefGoogle Scholar
  69. Orange, G., Dupuis, D., & Martin, J. V. (2004). Chemical modification of bitumen through polyphosphoric acid: Properties–microstructure relationship. In Proceedings of the 3rd Eurasphalt and Eurobitume Congress, Vienna, Austria.Google Scholar
  70. Ouyang, C., Wang, S., Zhang, Y., & Zhang, Y. (2006). Improving the aging resistance of styrene-butadiene-styrene tri-block copolymer modified asphalt by addition of antioxidants. Polymer Degradation and Stability, 91(4).Google Scholar
  71. Palierne, J.-F. (1991). Linear rheology of viscoelastic emulsions with interfacial tension. Rheologica Acta, 30(497).Google Scholar
  72. Pauli, T., Grimes, W., Beiswenger, J., & Schmets, A. (2015). Surface structuring of wax in complex media. Journal of Materials in Civil Engineering, 27.Google Scholar
  73. Petersen, J. C. (1971). A thermodynamic study by infrared spectroscopy of the association of 2-quinolone, some carboxylic acids, and the corresponding 2-quinolone-acid dimer. Journal of Physical Chemistry, 75, 1129–1135.CrossRefGoogle Scholar
  74. Petersen, J. C. (1989). A thin film accelerated aging test for evaluating asphalt oxidative aging. Asphalt Paving Technologists, 58, 220–237.Google Scholar
  75. Petersen, J. C., Branthaver, J. F., Robertson, R. E., Harnsberger, P. M., Duvall, J. J., & Ensley, E. K. (1993). Effects of physicochemical factors on asphalt oxidation kinetics. Transportation Research Record 1391 (pp. 1–10), Transportation Research Board, Washington, D.C.Google Scholar
  76. Petersen, J. C., Plancher, H., & Harnsberger, P. M. (1987a). Lime treatment of asphalts to reduce age hardening and improve flow properties. In Proceedings of the Association of Asphalt Paving Technologists (Vol. 56, pp. 632–653).Google Scholar
  77. Petersen, J. C., Plancher, H., & Harnsberger, P. M. (1987b). Lime treatment of asphalt. Final Report Prepared for the National Lime Association, Western Research Institute, Laramie, Wyo.Google Scholar
  78. Petersen, J. C., Plancher, H., & Harnsberger, P. M. (1987c). Lime treatment of asphalt to reduce age hardening and improve flow properties. In Proceedings of the Association of Asphalt Paving Technology (Vol. 56, pp. 632–653).Google Scholar
  79. Petersen, J. C., Plancher, H., & Harnsberger, P. M. (1987d). Lime treatment of asphalt. Final Report Prepared for The National Lime Association, Western Research Institute, Laramie, Wyo.Google Scholar
  80. Petersen, J. C., & Glaser, H. (2011). Asphalt oxidation mechanisms and the role of oxidation products on age hardening revisited. Road Materials Pavement Design, 12.Google Scholar
  81. Pilat, J., Radziszewski, P., & Kalabiska, M. (2000). The analysis of visco-elastic properties of mineral- asphalt mixes with lime and rubber powder. In Proceedings of the 2nd Eurasphalt and Eurobitume Congress (Vol. 1, pp. 648–654), paper 0036. Brussels, Belgium: Eurobitume and European Asphalt Pavement Association.Google Scholar
  82. Plancher, H., Green, E. L., & Petersen, J. C. (1976). Reduction of oxidative hardening of asphalts by treatment with hydrated lime—a mechanistic study. In Proceedings of the Association Asphalt Paving Technologists (Vol. 45, pp. 1–24). Lino Lakes, MN: Association Asphalt Paving Technologists (AAPT).Google Scholar
  83. Ramond, G., & Lesueur, D. (2004). Adhesion liant granulat. In H. Di Benedetto & J.-F. Corté (Eds.), Materiaux routiers bitumineux (Vol. 1, pp. 177–203). Paris: Lavoisier (in French).Google Scholar
  84. Raynaud, C. (2009). L’ajout de chaux hydratée dans les enrobés bitumineux. BTP Matériaux, 22, 42–43 (in French).Google Scholar
  85. Redelius. (2009). Asphaltenes in bitumen, what they are and what they are not. Road Materials Pavement Design, 10(1).Google Scholar
  86. Reese, R. (1997). Properties of aged asphalt binder related to asphalt concrete fatigue life. Asphalt Paving Technologists, 66, 604–632.Google Scholar
  87. Rigden, D. J. (1947). Mineral fillers in bituminous road surfacings: A study of filler/binder systems in relation to filler characteristics. Journal of the Society of Chemical Industry, 66, 299–309.CrossRefGoogle Scholar
  88. Roberts, F. L., Kandal, P. S., Brown, E. R., Lee, D., & Kennedy, T. W. (1996). Hot mix asphalt materials, mixture design, and construction (2nd ed.). Maryland: NAPA Research and Education Foundation.Google Scholar
  89. Rodriquez, M. G., Morrison, G. R., Van Loon, J. R., & Hesp, S. A. M. (1995). Low-temperature failure in particulate-filled asphalt binders and asphalt concrete mixes. Asphalt Paving Technologists, 69, 159–187.Google Scholar
  90. Rowe, G. M., & Bouldin, M. G. (2000). Improved techniques to evaluate the fatigue resistance of asphaltic mixes. In Proceedings of the 2nd Enraphalt and Eurobitume Congress, Barcelona, Spain.Google Scholar
  91. Sadeghpour Galooyak, S., Dabir, B., Nazarbeygi, A. E., Moeini, A., & Berahman, B. (2011). The effect of nanoclay on rheological properties and storage stability of SBS-modified bitumen. Petroleum Science and Technology, 29(8), 850–859. doi: 10.1080/10916460903502449.CrossRefGoogle Scholar
  92. Saville, V. B., & Axon, E. O. (1937). Adhesion of asphaltic binders to mineral aggregates. Journal of the Association of Asphalt Paving Technologists, 9, 86–101.Google Scholar
  93. Sebaaly, P. E., Hitti, E., & Weitzel, D. (2003). Effectiveness of lime in hot-mix asphalt pavements. Transportation Research Record 1832 (pp. 34–41), Transportation Research Board, Washington, D.C.Google Scholar
  94. Shashidhar, N., Needham, S. P., Chollar, B. H., & Romero, P. (1999). Prediction of the performance of mineral fillers in stone matrix asphalt. Asphalt Paving Technologists, 68, 222–251.Google Scholar
  95. Shashidhar, N., & Romero, P. (1998). Factors affecting the stiffening potential of mineral fillers. Transportation Research Record 1638 (pp. 94–100), Transportation Research Board, Washington, D.C.Google Scholar
  96. Si, Z. (2001). Characterization of microdamage and healing of asphalt concrete mixtures. PhD thesis, Texas A&M University, College Station, Tex.Google Scholar
  97. Siegmann, M. C. (1950a). Manufacture of asphaltic bitumen. In J. P. Pfeiffer (Ed.), The properties of asphaltic bitumen (pp. 121–154). Amsterdam: Elsevier.Google Scholar
  98. Siegmann, M. C. (1950b). Methods of routine investigation. In J. P. Pfeiffer (Ed.), The properties of asphaltic bitumen (pp. 155–188). Amsterdam: Elsevier.Google Scholar
  99. Simmons, G. W., & Beard, B. (1987). Characterization of acid-base properties of the hydrated oxides on iron and titanium metal surfaces. Journal of Physical Chemistry, 91, 1143.CrossRefGoogle Scholar
  100. Storm, D. A., Sheu, E. Y., & De Tar, M. M. (1993). Macrostructure of asphaltenes in vacuum residue by small-angle X-Ray scattering. Fuel, 72, 977–981.CrossRefGoogle Scholar
  101. Storm, D. A., Barresi, R. J., & Sheu, E. Y. (1995). Rheological study of Ratawi vacuum residue in the 298-673 K temperature range. Energy and Fuels, 9, 168–176.CrossRefGoogle Scholar
  102. Tadros, T. F., & Vincent, B. (1983). Emulsion stability. In P. Becher (Ed.), Encyclopedia of emulsion science, vol. 1. Basic Theory (pp. 129–285). New York: Marcel Dekker.Google Scholar
  103. Tarrar, A. R., & Wagh, V. P. (1992). The effect of the physical and chemical characteristics of the aggregate on bonding. Report SHRP-A/ UIR-91-507, Washington, D.C.: Strategic Highway Research Program, National Research Council.Google Scholar
  104. Taylor, G. I. (1932). The viscosity of a fluid containing small drops of another fluid. Papers of a Mathematical and Physical Character, 138, 41–48.zbMATHGoogle Scholar
  105. Timm, D. H., Robbins, M. M., Willis, J. R., Tran, N., & Taylor, A. J. (2012). Evaluation of Mixture Performance and Structural Capacity of Pavements Using Shell Thiopave: Phase II—Construction, Laboratory Evaluation, and Full-Scale Testing of Thiopave Test Sections—Final Report. Report 11-03, National Center for Asphalt Technology, Auburn University.Google Scholar
  106. Titova, T. I., Kosheleva, L. S., & Zhdanov, S. P. (1987). IR study of hydroxylated silica. Langmuir, 3, 960.CrossRefGoogle Scholar
  107. Tunnicliff, D. G. (1967). Binding effects of mineral filler. In Proceedings of the Association of Asphalt Paving Technologists (pp. 114–156), Transportation Research Board, Washington, D.C.Google Scholar
  108. Vanelstralete, A., & Verhasselt, A. (1998). Interpretation Report EP 5080, Belgian Road Research Centre, Brussels, Belgium.Google Scholar
  109. Voskuilen, J. L. M., & Verhoef, P. N. W. (2003). Causes of premature ravelling failure in porous asphalt. In Proceedings of the RILEM symposium on Performance Testing and Evaluation of Bituminous Materials (pp. 191–197). Bagneux, France: International Union of Laboratories and Experts in Construction Materials, Systems and Structures.Google Scholar
  110. Walker, P. (1994). Silane and other adhesion promoters in adhesive technology. In A. Pizzi & K. L. Mittal (Eds.), Handbook of adhesive technology (pp. 50–52). New York: Marcel Dekker Inc.Google Scholar
  111. Wen, G., Zhang, Y., Zhang, Y., Sun, K., & Fan, Y. (2002). Improved properties of SBS-modified asphalt with dynamic vulcanization. Polymer Engineering and Science, 42, 1070–1081. doi: 10.1002/pen.11013.CrossRefGoogle Scholar
  112. Western Research Institute (WRI). (1996). Fundamental properties of asphalts and modified asphalts, annual technical report. Contract DTFH61-92C-00170, U.S. Department of Transportation, Washington, D.C.Google Scholar
  113. Wisneski, M. L., Chaffin, J. M., Davison, R. R., Bullin, J. A., & Glover, C. J. (1996). Use of lime in recycling asphalt. Transportation Research Record 1535 (pp. 117–123), Transportation Research Board, Washington, D.C.Google Scholar
  114. Wortelboer, J. P., Hoppen, H. J., Ramond, G., & Pastor, M. (1996). Rheological properties of bitumen/filler Mixtures. In Proceedings of the 1st Eurasphalt and Eurobitume Congress, paper 4.079. Brussels, Belgium: Eurobitume and European Asphalt Pavement Association (EAPA).Google Scholar
  115. Zhu, J., Birgisson, B., & Kringos, N. (2014). Polymer Modification of bitumen: Advances and challenges. European Polymer Journal, 54(1).Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Dallas N. Little
    • 1
    Email author
  • David H. Allen
    • 1
  • Amit Bhasin
    • 2
  1. 1.Texas A&M UniversityCollege StationUSA
  2. 2.The University of Texas at AustinAustinUSA

Personalised recommendations