Skip to main content

Abstract

This chapter focuses on asphalt binder, which is one of the critical ingredients of asphalt mixtures used in the construction and maintenance of pavements. This chapter introduces the role of asphalt binders in dictating the overall performance of an asphalt mixture and briefly introduces the production of asphalt binders. The bulk of the chapter focuses on three topics: (i) The chemical properties of the binder that are relevant for researchers and pavement engineers, (ii) aging in asphalt binders during mixture production and service life, and (iii) the mechanical properties of the asphalt binder that dictate the performance of the asphalt mixture and pavement including typical methods used to measure such properties. Chapter sections on the chemical composition and aging of asphalt binders require only a basic knowledge of chemistry for readers to follow and form a critical backdrop to better understand and appreciate the behavior of binders and mixtures. The section on mechanical properties introduces the concepts of time-temperature-age dependency of asphalt binders as well as typical methods and models used to measure these properties. Parts of this section are designed to overlap with Part II of this book, which contains a more exhaustive mechanistic description of this behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Additional Reading

  • Robertson, R. E. (2000). Chemical properties of asphalts and their effects on pavement performance.

    Google Scholar 

  • Redelius, P. G. (2006a). The structure of asphaltenes in bitumen. Road Materials and Pavement Design, 7(sup1), 143–162.

    Article  Google Scholar 

  • Lesueur, D. (2009a). Evidence of colloidal structure of bitumen. Advances in Colloid and Interface Science, 145(1–2), 42–82.

    Article  Google Scholar 

References

  • Aklonis, J. J., MacKnight, W. J., & Shen, M. (1972). Introduction to polymer viscoelasticity (pp. 52–53). Wiley Interscience.

    Google Scholar 

  • Allen, R. G., et al. (2013). Identification of the composite relaxation modulus of asphalt binder using AFM nanoindentation. Journal of Materials in Civil Engineering (ASCE), 25(4), 530–539.

    Article  Google Scholar 

  • Allen, R. G., Little, D. N., & Bhasin, A. (2012). Structural characterization of micromechanical properties in asphalt using atomic force microscopy. Journal of Materials in Civil Engineering, 24(10), 1317–1327.

    Article  Google Scholar 

  • Baumgardner, G. L., Reinke, G. R., & Brown, J. (2012). Lubricity properties of asphalt binders used in hot-mix and warm-mix asphalt pavements. Turkey: In Eurasphalt and Eurobitume Congress.

    Google Scholar 

  • Chow, T. S. (1980). The effect of particle shape on the mechanical properties of filled polymers. Journal of Materials Science, 15(8), 1873–1888. Retrieved from http://link.springer.com/article/10.1007/BF00550613.

  • Corbett, L. W. (1969). Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization. Analytical Chemistry, 41(4), 576–579.

    Article  Google Scholar 

  • Demjén, Z., Pukánszky, B. & Nagy, J. (1998). Evaluation of interfacial interaction in polypropylene/surface treated CaCO3 composites. Composites Part A: Applied Science and Manufacturing, 29(3), 323–329. Retrieved from http://www.sciencedirect.com/science/article/pii/S1359835X97000328.

  • Dickie, J. P., & Yen, T. F. (1967). Marcrostructuare of the asphaltic fractions by various instrumental methods. Analytical Chemistry, 39, 1847–1852.

    Article  Google Scholar 

  • Doolittle, A. K. (1951). Studies in Newtonian flow. I. The dependence of the viscosity of liquids on temperature. Journal of Applied Physics, 22(8), 1031–1035.

    Google Scholar 

  • Elias, L. et al., 2007. Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer, 48(20), pp. 6029–6040. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032386107007665.

  • Hubbard, R. L., & Stanfield, K. E. (1948). Determinatio of asphaltenes, oils, and resins in asphalt. Analytical Chemistry, 20, 460–465.

    Article  Google Scholar 

  • Kringos, N. et al. (2009). A thermodynamical approach to healing in bitumen. In A. Loizos et al. (Eds), Advanced testing and characterisation of bituminous materials (pp. 123–128). Rhodes, Greece: Taylor & Francis Group, Boca Raton, Florida.

    Google Scholar 

  • Koots, J. A., & Speight, J. G. (1975). Relation of petroleum resins to asphaltenes. Fuel, 54(3), 179–184.

    Google Scholar 

  • Lesueur, D. (2009b). Evidence of colloidal structure of bitumen. Advances in Colloid and Interface Science, 145(1–2), 42–82.

    Article  Google Scholar 

  • Lesueur, D. (2009c). The colloidal structure of bitumen: Consequences of the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145(1–2), 42–82.

    Article  Google Scholar 

  • Lin, M. S., et al. (1995). The effects of asphaltenes on asphalt recycling and aging. Transportation Research Record, 1507, 86–95.

    Google Scholar 

  • Loeber, L., et al. (1996). New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy. Journal of Microscopy, 182(1), 32–39.

    Article  Google Scholar 

  • Masson, J.-F., Leblond, V., & Margeson, J. (2006). Bitumen morphologies by phase-detection atomic force microscopy. Journal of Microscopy, 221(1), 17–29.

    Article  MathSciNet  Google Scholar 

  • Masson, J. F., et al. (2007). Low-temperature bitumen stiffness and viscous paraffinic nano-and micro-domains by cryogenic AFM and PDM. Journal of Microscopy, 227(3), 191–202.

    Article  MathSciNet  Google Scholar 

  • Mortazavi, M., & Moulthrop, J. S. (1993). The SHRP materials reference library. SHRP Report A-646. National Research Council. Washington, D.C.

    Google Scholar 

  • Osmari, P. H., Arega, Z. A., & Bhasin, A. (2015). Wetting characteristics of asphalt binders at mixing temperatures. Transportation Research Record: Journal of the Transportation Research Board, In Press.

    Google Scholar 

  • Palierne, J. F. (1990). Linear rheology of viscoelastic emulsions with interfacial tension. Rheologica Acta, 29(3), 204–214. Retrieved from http://link.springer.com/article/10.1007/BF01331356.

  • Petersen, J. C. (1984). Chemical composition of asphalt as related to asphalt durability: State of the art. Transportation Research Record: Journal of the Transportation Research Board, 999, 13–30.

    Google Scholar 

  • Petersen, J. C., et al. (1993). Effects of physiochemical factors on asphalt oxidation kinetics. Transportation Research Record, 1391, 1.

    Google Scholar 

  • Pfeiffer, J. P., & Saal, R. N. J. (1940). Asphaltic bitumen as colloid system. The Journal of Physical Chemistry, 44(2), 139–149.

    Google Scholar 

  • Ramm, A., Sakib, N., Bhasin, A., & Downer, M. C. (2016). Optical characterization of temperature‐and composition‐dependent microstructure in asphalt binders. Journal of Microscopy, 262(3), 216–225.

    Google Scholar 

  • Read, J., & Whiteoak, D. (2003). The shell bitumen handbook (5th ed.). London: Thomas Telford Publishing.

    Google Scholar 

  • Redelius, P. G. (2006b). The structure of asphaltenes in bitumen. Road Materials and Pavement Design, 7(sup1), 143–162.

    Article  Google Scholar 

  • Rogel, E. (1995). Studies of asphaltene aggregation via computational chemistry. Colloids and Surfaces A, 104, 85–93.

    Article  Google Scholar 

  • Schmets, A., et al. (2009). First-principles investigation of the multiple phases in bituminous materials: the case of asphaltene stacking. In A. Loizos et al. (Eds.), Advanced testing and characterisation of bituminous materials (pp. 143–150). Boca Raton, Florida: Taylor & Francis Group.

    Google Scholar 

  • Schmets, A., et al. (2010). On the existence of wax-induced phase separation in bitumen. International Journal of Pavement Engineering, 11(6), 555–563.

    Article  Google Scholar 

  • Siegmann, M. (1950). Manufacture of asphaltic bitumen. In J. P. Pfeiffer (Ed.) The properties of asphaltic bitumen (pp. 121–154). Amsterdam: Elsevier.

    Google Scholar 

  • Speight, J. G. (1999). The chemistry and technology of petroleum. Springer.

    Google Scholar 

  • Traxler, R. N., & Romberg, J. W. (1952). Asphalt, a colloidal material. Industrial & Engineering Chemistry, 44(1), 155–158. Retrieved from http://dx.doi.org/10.1021/ie50505a045.

  • Vasconcelos, K. L. (2010). Moisture Diffusion in Asphalt Binders and Fine Aggregate Mixtures. Doctoral dissertation, Texas A&M University

    Google Scholar 

  • Verghese, N. E., & Lesko, J. J. (1999). Fatigue performance: The role of the Interphase (pp. 336–348). New York, NY: CRC Press.

    Google Scholar 

  • West, R. C., Watson, D. E., Turner, P. A., & Casola, J. R. (2010). Mixing and compaction temperatures of asphalt binders in hot-mix asphalt. Washington D.C.

    Google Scholar 

  • Wulf, M., Uhlmann, P., Michel, S., & Grundke, K. (2000). Surface tension studies of levelling additives in powder coatings. Progress in Organic Coatings, 38(2), 59–66.

    Article  Google Scholar 

  • Zhao, S., et al. (2001). Solids contents, properties and molecular structures for various asphaltenes from different oilsands. Fuel, 80, 1907–1914.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dallas N. Little .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Little, D.N., Allen, D.H., Bhasin, A. (2018). Asphalt Binders. In: Modeling and Design of Flexible Pavements and Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-58443-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58443-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58441-6

  • Online ISBN: 978-3-319-58443-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics