Advertisement

Asphalt Binders

  • Dallas N. LittleEmail author
  • David H. Allen
  • Amit Bhasin
Chapter

Abstract

This chapter focuses on asphalt binder, which is one of the critical ingredients of asphalt mixtures used in the construction and maintenance of pavements. This chapter introduces the role of asphalt binders in dictating the overall performance of an asphalt mixture and briefly introduces the production of asphalt binders. The bulk of the chapter focuses on three topics: (i) The chemical properties of the binder that are relevant for researchers and pavement engineers, (ii) aging in asphalt binders during mixture production and service life, and (iii) the mechanical properties of the asphalt binder that dictate the performance of the asphalt mixture and pavement including typical methods used to measure such properties. Chapter sections on the chemical composition and aging of asphalt binders require only a basic knowledge of chemistry for readers to follow and form a critical backdrop to better understand and appreciate the behavior of binders and mixtures. The section on mechanical properties introduces the concepts of time-temperature-age dependency of asphalt binders as well as typical methods and models used to measure these properties. Parts of this section are designed to overlap with Part II of this book, which contains a more exhaustive mechanistic description of this behavior.

Additional Reading

  1. Robertson, R. E. (2000). Chemical properties of asphalts and their effects on pavement performance.Google Scholar
  2. Redelius, P. G. (2006a). The structure of asphaltenes in bitumen. Road Materials and Pavement Design, 7(sup1), 143–162.CrossRefGoogle Scholar
  3. Lesueur, D. (2009a). Evidence of colloidal structure of bitumen. Advances in Colloid and Interface Science, 145(1–2), 42–82.CrossRefGoogle Scholar

References

  1. Aklonis, J. J., MacKnight, W. J., & Shen, M. (1972). Introduction to polymer viscoelasticity (pp. 52–53). Wiley Interscience.Google Scholar
  2. Allen, R. G., et al. (2013). Identification of the composite relaxation modulus of asphalt binder using AFM nanoindentation. Journal of Materials in Civil Engineering (ASCE), 25(4), 530–539.CrossRefGoogle Scholar
  3. Allen, R. G., Little, D. N., & Bhasin, A. (2012). Structural characterization of micromechanical properties in asphalt using atomic force microscopy. Journal of Materials in Civil Engineering, 24(10), 1317–1327.CrossRefGoogle Scholar
  4. Baumgardner, G. L., Reinke, G. R., & Brown, J. (2012). Lubricity properties of asphalt binders used in hot-mix and warm-mix asphalt pavements. Turkey: In Eurasphalt and Eurobitume Congress.Google Scholar
  5. Chow, T. S. (1980). The effect of particle shape on the mechanical properties of filled polymers. Journal of Materials Science, 15(8), 1873–1888. Retrieved from http://link.springer.com/article/10.1007/BF00550613.
  6. Corbett, L. W. (1969). Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization. Analytical Chemistry, 41(4), 576–579.CrossRefGoogle Scholar
  7. Demjén, Z., Pukánszky, B. & Nagy, J. (1998). Evaluation of interfacial interaction in polypropylene/surface treated CaCO3 composites. Composites Part A: Applied Science and Manufacturing, 29(3), 323–329. Retrieved from http://www.sciencedirect.com/science/article/pii/S1359835X97000328.
  8. Dickie, J. P., & Yen, T. F. (1967). Marcrostructuare of the asphaltic fractions by various instrumental methods. Analytical Chemistry, 39, 1847–1852.CrossRefGoogle Scholar
  9. Doolittle, A. K. (1951). Studies in Newtonian flow. I. The dependence of the viscosity of liquids on temperature. Journal of Applied Physics, 22(8), 1031–1035.Google Scholar
  10. Elias, L. et al., 2007. Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer, 48(20), pp. 6029–6040. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032386107007665.
  11. Hubbard, R. L., & Stanfield, K. E. (1948). Determinatio of asphaltenes, oils, and resins in asphalt. Analytical Chemistry, 20, 460–465.CrossRefGoogle Scholar
  12. Kringos, N. et al. (2009). A thermodynamical approach to healing in bitumen. In A. Loizos et al. (Eds), Advanced testing and characterisation of bituminous materials (pp. 123–128). Rhodes, Greece: Taylor & Francis Group, Boca Raton, Florida.Google Scholar
  13. Koots, J. A., & Speight, J. G. (1975). Relation of petroleum resins to asphaltenes. Fuel, 54(3), 179–184.Google Scholar
  14. Lesueur, D. (2009b). Evidence of colloidal structure of bitumen. Advances in Colloid and Interface Science, 145(1–2), 42–82.CrossRefGoogle Scholar
  15. Lesueur, D. (2009c). The colloidal structure of bitumen: Consequences of the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145(1–2), 42–82.CrossRefGoogle Scholar
  16. Lin, M. S., et al. (1995). The effects of asphaltenes on asphalt recycling and aging. Transportation Research Record, 1507, 86–95.Google Scholar
  17. Loeber, L., et al. (1996). New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy. Journal of Microscopy, 182(1), 32–39.CrossRefGoogle Scholar
  18. Masson, J.-F., Leblond, V., & Margeson, J. (2006). Bitumen morphologies by phase-detection atomic force microscopy. Journal of Microscopy, 221(1), 17–29.MathSciNetCrossRefGoogle Scholar
  19. Masson, J. F., et al. (2007). Low-temperature bitumen stiffness and viscous paraffinic nano-and micro-domains by cryogenic AFM and PDM. Journal of Microscopy, 227(3), 191–202.MathSciNetCrossRefGoogle Scholar
  20. Mortazavi, M., & Moulthrop, J. S. (1993). The SHRP materials reference library. SHRP Report A-646. National Research Council. Washington, D.C.Google Scholar
  21. Osmari, P. H., Arega, Z. A., & Bhasin, A. (2015). Wetting characteristics of asphalt binders at mixing temperatures. Transportation Research Record: Journal of the Transportation Research Board, In Press.Google Scholar
  22. Palierne, J. F. (1990). Linear rheology of viscoelastic emulsions with interfacial tension. Rheologica Acta, 29(3), 204–214. Retrieved from http://link.springer.com/article/10.1007/BF01331356.
  23. Petersen, J. C. (1984). Chemical composition of asphalt as related to asphalt durability: State of the art. Transportation Research Record: Journal of the Transportation Research Board, 999, 13–30.Google Scholar
  24. Petersen, J. C., et al. (1993). Effects of physiochemical factors on asphalt oxidation kinetics. Transportation Research Record, 1391, 1.Google Scholar
  25. Pfeiffer, J. P., & Saal, R. N. J. (1940). Asphaltic bitumen as colloid system. The Journal of Physical Chemistry, 44(2), 139–149.Google Scholar
  26. Ramm, A., Sakib, N., Bhasin, A., & Downer, M. C. (2016). Optical characterization of temperature‐and composition‐dependent microstructure in asphalt binders. Journal of Microscopy, 262(3), 216–225.Google Scholar
  27. Read, J., & Whiteoak, D. (2003). The shell bitumen handbook (5th ed.). London: Thomas Telford Publishing.Google Scholar
  28. Redelius, P. G. (2006b). The structure of asphaltenes in bitumen. Road Materials and Pavement Design, 7(sup1), 143–162.CrossRefGoogle Scholar
  29. Rogel, E. (1995). Studies of asphaltene aggregation via computational chemistry. Colloids and Surfaces A, 104, 85–93.CrossRefGoogle Scholar
  30. Schmets, A., et al. (2009). First-principles investigation of the multiple phases in bituminous materials: the case of asphaltene stacking. In A. Loizos et al. (Eds.), Advanced testing and characterisation of bituminous materials (pp. 143–150). Boca Raton, Florida: Taylor & Francis Group.Google Scholar
  31. Schmets, A., et al. (2010). On the existence of wax-induced phase separation in bitumen. International Journal of Pavement Engineering, 11(6), 555–563.CrossRefGoogle Scholar
  32. Siegmann, M. (1950). Manufacture of asphaltic bitumen. In J. P. Pfeiffer (Ed.) The properties of asphaltic bitumen (pp. 121–154). Amsterdam: Elsevier.Google Scholar
  33. Speight, J. G. (1999). The chemistry and technology of petroleum. Springer.Google Scholar
  34. Traxler, R. N., & Romberg, J. W. (1952). Asphalt, a colloidal material. Industrial & Engineering Chemistry, 44(1), 155–158. Retrieved from http://dx.doi.org/10.1021/ie50505a045.
  35. Vasconcelos, K. L. (2010). Moisture Diffusion in Asphalt Binders and Fine Aggregate Mixtures. Doctoral dissertation, Texas A&M UniversityGoogle Scholar
  36. Verghese, N. E., & Lesko, J. J. (1999). Fatigue performance: The role of the Interphase (pp. 336–348). New York, NY: CRC Press.Google Scholar
  37. West, R. C., Watson, D. E., Turner, P. A., & Casola, J. R. (2010). Mixing and compaction temperatures of asphalt binders in hot-mix asphalt. Washington D.C.Google Scholar
  38. Wulf, M., Uhlmann, P., Michel, S., & Grundke, K. (2000). Surface tension studies of levelling additives in powder coatings. Progress in Organic Coatings, 38(2), 59–66.CrossRefGoogle Scholar
  39. Zhao, S., et al. (2001). Solids contents, properties and molecular structures for various asphaltenes from different oilsands. Fuel, 80, 1907–1914.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Dallas N. Little
    • 1
    Email author
  • David H. Allen
    • 1
  • Amit Bhasin
    • 2
  1. 1.Texas A&M UniversityCollege StationUSA
  2. 2.The University of Texas at AustinAustinUSA

Personalised recommendations