Advertisement

Computational Modeling Applications

  • Dallas N. LittleEmail author
  • David H. Allen
  • Amit Bhasin
Chapter

Abstract

In this chapter, several different computational methods are demonstrated as they apply to modeling asphalt mixtures and flexible pavements. Specifically, the following computational methodologies are deployed herein: (1) micromechanics; (2) expanding multi-scaling; (3) contracting multi-scaling; and (4) two-way coupled multi-scaling. As demonstrated herein, each of these approaches has its place in the modeling of flexible pavements.

Keywords

Computational modeling Computational micromechanics Resilient modulus test Multi-scaling Expanding multi-scaling Contracting multi-scaling Two-way coupled multi-scaling Modeling evolving cracks 

References

  1. Allen, D., & Yoon, C. (1998). Homogenization techniques for thermoviscoelastic solids containing cracks. The International Journal of Solids Structures, 35, 4035.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Allen, D., & Searcy (2000) Numerical aspects of a micromechanical model for a cohesive zone. The Journal of Reinforced Plastics Composites, 19, 240.Google Scholar
  3. Allen, D. (2002). Homogenization principles and their application to continuum damage mechanics. Composites Science and Technology, 61, 2223.CrossRefGoogle Scholar
  4. Allen, D., & Searcy, C. (2006). A model for predicting the evolution of multiple cracks on multiple length scales in viscoelastic composites. The Journal of Materials Science, 41, 6501.CrossRefGoogle Scholar
  5. Allen, D. (2014). How mechanics shaped the modern world. Springer.Google Scholar
  6. Allen, D., Little, D., Soares, R., & Berthelot, C. (2017a). Multi-scale computational model for design of flexible pavement—part I: Expanding multi-scaling, The International Journal on Pavement Engineering, 18, 309.Google Scholar
  7. Allen, D., Little, D., Soares, R., & Berthelot, C. (2017b). Multi-scale computational model for design of flexible pavement—part II: Contracting multi-scaling, The International Journal on Pavement Engineering, 18, 321.Google Scholar
  8. Allen, D., Little, D., Soares, R., & Berthelot, C. (2017c). Multi-scale computational model for design of flexible pavement—part III: Two-way coupled multi-scaling, The International Journal on Pavement Engineering, 18, 335.Google Scholar
  9. Costanzo, F., Boyd, J., & Allen, D. (1996). Micromechanics and homogenization of inelastic composite materials with growing cracks. Journal of the Mechanics and Physics of Solids, 44, 333.MathSciNetCrossRefzbMATHGoogle Scholar
  10. Helms, K., Allen, D., & Hurtado, L. (1999). A model for predicting grain boundary cracking in polycrystalline viscoplastic materials including scale effects. The International Journal of Fracture, 95, 175.CrossRefGoogle Scholar
  11. Huang, Y. (2004). Pavement analysis and design (2nd ed.). Prentice Hall.Google Scholar
  12. Moore, G. (1965). Cramming more components onto integrated circuits, Electronics Magazine, 4.Google Scholar
  13. Phillips, M., Yoon, C., & Allen, D. (1999). A computational model for predicting damage evolution in laminated composite plates. Journal of Engineering Materials and Technology, 21, 436.Google Scholar
  14. Rodin, G. (1996). Eshelby’s inclusion problem for polygons and polyhedra. Journal of the Mechanics and Physics of Solids, 44, 1977.CrossRefGoogle Scholar
  15. Soares, R., Kim, Y., & Allen, D. (2008). Multiscale computational modeling for predicting evolution of damage in asphaltic pavements. In A. Loizos, T. Scarpas & I. Al-Qadi (Eds.) Pavement cracking mechanisms, modeling, detection, testing and case histories (p. 599). CRC Press.Google Scholar
  16. Souza, F., Allen, D., & Kim, Y. (2008). Multiscale model for predicting damage evolution in composites due to impact loading. Composites Science and Technology, 68, 2624.CrossRefGoogle Scholar
  17. Souza, F., & Allen, D. (2009). Model for predicting multiscale crack growth due to impact in heterogeneous viscoelastic solids. Mechanics of Composite Materials, 45, 145.CrossRefGoogle Scholar
  18. Souza, F., & Allen, D. (2011a). Modeling failure of heterogeneous viscoelastic solids under dynamic/impact loading due to multiple evolving cracks using a multiscale model. Mechanics of Time-Dependent Materials, 14, 125.CrossRefGoogle Scholar
  19. Souza, F., & Allen, D. (2011b). Multiscale modeling of impact on heterogeneous viscoelastic solids containing evolving microcracks. The International Journal for Numerical Methods in Engineering, 82, 464.MathSciNetzbMATHGoogle Scholar
  20. Standard Method of Test for Determining the Resilient Modulus of soils and Aggregate Materials. (2007). American Association of State Highway and Transportation Officials, AASHTO Report No. T307.Google Scholar
  21. Zocher, M., Allen, D., & Groves, S. (1997). A three dimensional finite element formulation for thermoviscoelastic orthotropic media. International Journal for Numerical Methods in Engineering, 40, 2267.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Dallas N. Little
    • 1
    Email author
  • David H. Allen
    • 1
  • Amit Bhasin
    • 2
  1. 1.Texas A&M UniversityCollege StationUSA
  2. 2.The University of Texas at AustinAustinUSA

Personalised recommendations