Skip to main content

Plasticity, Viscoplasticity, and Fracture

  • Chapter
  • First Online:
Modeling and Design of Flexible Pavements and Materials

Abstract

This chapter presents an overview of the development of the theories of plasticity, viscoplasticity, and thermoviscoplasticity. In addition, two methodologies that can be utilized to account for the effects of progressive cracking are briefly reviewed. An understanding of these models is essential to the ability to predict the response of flexible pavements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, D. (1991). A review of the theory of thermomechanical coupling in inelastic solids. Applied Mechanics Reviews, 44, 361.

    Article  Google Scholar 

  • Allen, D., & Searcy, C. (2000). Numerical aspects of a micromechanical model of a cohesive zone. Journal of Reinforced Plastics and Composites, 19, 240–248.

    Article  Google Scholar 

  • Allen, D., & Searcy, C. (2001a). A micromechanical model for a viscoelastic cohesive zone. International Journal of Fracture, 107, 159–176.

    Article  Google Scholar 

  • Allen, D., & Searcy, C. (2001b). A micromechanically based model for predicting dynamic damage evolution in ductile polymers. Mechanics of Materials, 33, 177–184.

    Article  Google Scholar 

  • Allen, D. (2014). How mechanics shaped the modern world. Springer.

    Google Scholar 

  • Barenblatt, G. (1962). The mathematical theory of equilibrium crack in brittle fracture. Advances in Applied Mechanics, 7, 55.

    Article  MathSciNet  Google Scholar 

  • Bazant, Z. & Li, Y. (1997). Cohesive crack with rate-dependent opening and viscoelasticity: I. mathematical model and scaling. International Journal of Fracture, 86, 247.

    Google Scholar 

  • de Borst, R. (2003). Numerical aspects of cohesive-zone models. Engineering Fracture Mechanics, 70, 1743.

    Article  Google Scholar 

  • Cela, J. (1998). Analysis of reinforced concrete structures subjected to dynamic loads with a viscoplastic Drucker-Prager model. Applied Mathematical Modelling, 22, 495.

    Article  Google Scholar 

  • Christensen, R. (1981). A theory of crack growth in viscoelastic materials. Engineering Fracture Mechanics, 14, 215.

    Article  Google Scholar 

  • Coleman, B., & Gurtin, M. (1967). Thermodynamics with internal state variables. The Journal of Chemical Physics, 47, 597.

    Article  Google Scholar 

  • Coulomb, C. (1776). Essai sur une application des regles des maximis et minimis a quelques problemes de statique relatifs, a la architecture. Mem. Acad. Roy. Div. Sav. 7, 343.

    Google Scholar 

  • Drucker, D. (1951). A more fundamental approach to plastic stress-strain relations. In Proceedings of the 1st National Congress of Applied Mechanics (p. 487). ASME.

    Google Scholar 

  • Dugdale, D. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8(2), 100–104.

    Article  Google Scholar 

  • Elaskar, S., Godoy, L., Gray, D., & Stiles, J. (2000). A viscoplastic approach to model the flow of granular solids. Int. J. Solids Structures, 37, 2185.

    Article  MATH  Google Scholar 

  • Fourier, J. (1822). Théorie analytique de la chaleur. Firmin Didot.

    Google Scholar 

  • Gear, C. (1981). Numerical solution of ordinary differential equations: Is there anything left to do? SIAM Review, 23, 10.

    Article  MathSciNet  MATH  Google Scholar 

  • Gear, C. (1971). Numerical initial-value problems in ordinary differential equations. Prentice-Hall.

    Google Scholar 

  • Griffith, A. (1921). The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society, A221, 163.

    Article  Google Scholar 

  • Hill R (1950) The Mathematical theory of plasticity. The Oxford University Press.

    Google Scholar 

  • Kim, Y., Aragão, F., & Allen, D. (2010). Damage modeling of bituminous mixtures considering mixture microstructure, viscoelasticity, and cohesive zone fracture. Canadian Journal of Civil Engineering, 37, 1125.

    Article  Google Scholar 

  • Knauss, W. (1970). Delayed failure-the Griffith problem for linearly viscoelastic materials. Int. J. Fracture Mech., 6, 7.

    Google Scholar 

  • Kratochvil, J., & Dillon, O. (1970). Thermodynamics of crystalline elastic-visco-plastic materials. Journal of Applied Physics, 41, 1470.

    Article  Google Scholar 

  • Lubliner, J. (2008). Plasticity Theory. Courier Dover.

    Google Scholar 

  • L’Académie Française. (1699). Histoire de l’Académie Royale des Sciences avec les Mémoires de Mathématique et de Physique, 206.

    Google Scholar 

  • Masad, E., Tashman, L., Little, D., & Zbib, H. (2005). Viscoplastic modeling of asphalt mixes with the effects of anisotropy, damage and aggregate characteristics. Mechanics of Materials, 37, 1242.

    Article  Google Scholar 

  • Mises, R. (1913). Mechanik der festen körper im plastisch deformablen zustand, Göttinger Nachr (p. 582). Mathematisch-Physikalische Klasse.

    Google Scholar 

  • Naghdi, P. (1960). Stress-strain relations in plasticity and thermoplasticity. In E. Lee & P. Symonds (Eds.), Plasticity (p. 121). Pergamon.

    Google Scholar 

  • Needleman, A. (1987). A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics, 54, 525.

    Article  MATH  Google Scholar 

  • Negahban, M. (2012). The mechanical and thermodynamical theory of plasticity. CRC Press.

    Google Scholar 

  • Park, S., Kim, R., & Schapery, R. (1996). A viscoelastic continuum damage model and its application to uniaxial behavior of asphalt concrete. Mechanics of Materials, 24, 241.

    Article  Google Scholar 

  • Park, S., & Schapery, R. (1997). A viscoelastic constitutive model for particulate composites with growing damage. The International Journal of Solids and Structures, 34, 931.

    Article  MATH  Google Scholar 

  • Prager, W. (1959). An introduction to plasticity. Addison-Wesley.

    Google Scholar 

  • Prandtl, L. (1928), Ein gedankenmodell zur kinetischen theorie der festern körper, Z. Angew. Mathematics and Mechanics, 8, 85

    Google Scholar 

  • Schapery, R. (1984). Correspondence principles and a generalized J integral for large deformation and fracture analysis of viscoelastic media. International Journal of Fracture, 25, 195.

    Article  Google Scholar 

  • Schapery, R. (1999). Nonlinear viscoelastic and viscoplastic constitutive equations with growing damage. International Journal of Fracture, 97, 33.

    Article  Google Scholar 

  • Schapery, R. (1975). A theory of crack initiation and growth in viscoelastic media I. theoretical development. International Journal of Fracture, 11, 141.

    Google Scholar 

  • Tashman, L., Masad, E., Little, D., & Zbib, H. (2005). A microstructure-based viscoplastic model for asphalt concrete. International Journal of Plasticity, 21, 1659.

    Article  MATH  Google Scholar 

  • Timoshenko, S. (1953). History of strength of materials. McGraw-Hill.

    Google Scholar 

  • Tresca, H. (1864). Mémoire sur l’écoulement des corps solides soumis à de fortes pressions (vol. 59, p. 754). Paris: C.R. Academy of Sciences.

    Google Scholar 

  • Truesdell, C., & Toupin, R. (1954). The classical field theories, encyclopedia of physics. Springer, 3, 1.

    MATH  Google Scholar 

  • Tvergaard, V. (1990). Effect of fibre debonding in a whisker-reinforced metal. Materials Science and Engineering, 125, 203.

    Article  Google Scholar 

  • Willis, J. (1967). A comparison of the fracture criteria of Griffith and Barenblatt. Journal of the Mechanics and Physics of Solids, 42, 1397.

    Google Scholar 

  • Zeigler, H. (1959). A modification of Prager’s hardening rule. Quarterly of Applied Mathematics, 17, 55.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dallas N. Little .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Little, D.N., Allen, D.H., Bhasin, A. (2018). Plasticity, Viscoplasticity, and Fracture. In: Modeling and Design of Flexible Pavements and Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-58443-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58443-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58441-6

  • Online ISBN: 978-3-319-58443-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics