Advertisement

Plasticity, Viscoplasticity, and Fracture

  • Dallas N. LittleEmail author
  • David H. Allen
  • Amit Bhasin
Chapter

Abstract

This chapter presents an overview of the development of the theories of plasticity, viscoplasticity, and thermoviscoplasticity. In addition, two methodologies that can be utilized to account for the effects of progressive cracking are briefly reviewed. An understanding of these models is essential to the ability to predict the response of flexible pavements.

Keywords

Plasticity Viscoplasticity Fracture Yielding Yield criterion Flow rule Strain hardening Drucker’s postulate Workhardening rules Thermoviscoplasticity Thermodynamic constraints Cracking Damage mechanics Fracture mechanics Cohesive zone model 

References

  1. Allen, D. (1991). A review of the theory of thermomechanical coupling in inelastic solids. Applied Mechanics Reviews, 44, 361.CrossRefGoogle Scholar
  2. Allen, D., & Searcy, C. (2000). Numerical aspects of a micromechanical model of a cohesive zone. Journal of Reinforced Plastics and Composites, 19, 240–248.CrossRefGoogle Scholar
  3. Allen, D., & Searcy, C. (2001a). A micromechanical model for a viscoelastic cohesive zone. International Journal of Fracture, 107, 159–176.CrossRefGoogle Scholar
  4. Allen, D., & Searcy, C. (2001b). A micromechanically based model for predicting dynamic damage evolution in ductile polymers. Mechanics of Materials, 33, 177–184.CrossRefGoogle Scholar
  5. Allen, D. (2014). How mechanics shaped the modern world. Springer.Google Scholar
  6. Barenblatt, G. (1962). The mathematical theory of equilibrium crack in brittle fracture. Advances in Applied Mechanics, 7, 55.MathSciNetCrossRefGoogle Scholar
  7. Bazant, Z. & Li, Y. (1997). Cohesive crack with rate-dependent opening and viscoelasticity: I. mathematical model and scaling. International Journal of Fracture, 86, 247.Google Scholar
  8. de Borst, R. (2003). Numerical aspects of cohesive-zone models. Engineering Fracture Mechanics, 70, 1743.CrossRefGoogle Scholar
  9. Cela, J. (1998). Analysis of reinforced concrete structures subjected to dynamic loads with a viscoplastic Drucker-Prager model. Applied Mathematical Modelling, 22, 495.CrossRefGoogle Scholar
  10. Christensen, R. (1981). A theory of crack growth in viscoelastic materials. Engineering Fracture Mechanics, 14, 215.CrossRefGoogle Scholar
  11. Coleman, B., & Gurtin, M. (1967). Thermodynamics with internal state variables. The Journal of Chemical Physics, 47, 597.CrossRefGoogle Scholar
  12. Coulomb, C. (1776). Essai sur une application des regles des maximis et minimis a quelques problemes de statique relatifs, a la architecture. Mem. Acad. Roy. Div. Sav. 7, 343.Google Scholar
  13. Drucker, D. (1951). A more fundamental approach to plastic stress-strain relations. In Proceedings of the 1st National Congress of Applied Mechanics (p. 487). ASME.Google Scholar
  14. Dugdale, D. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8(2), 100–104.CrossRefGoogle Scholar
  15. Elaskar, S., Godoy, L., Gray, D., & Stiles, J. (2000). A viscoplastic approach to model the flow of granular solids. Int. J. Solids Structures, 37, 2185.CrossRefzbMATHGoogle Scholar
  16. Fourier, J. (1822). Théorie analytique de la chaleur. Firmin Didot.Google Scholar
  17. Gear, C. (1981). Numerical solution of ordinary differential equations: Is there anything left to do? SIAM Review, 23, 10.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Gear, C. (1971). Numerical initial-value problems in ordinary differential equations. Prentice-Hall.Google Scholar
  19. Griffith, A. (1921). The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society, A221, 163.CrossRefGoogle Scholar
  20. Hill R (1950) The Mathematical theory of plasticity. The Oxford University Press.Google Scholar
  21. Kim, Y., Aragão, F., & Allen, D. (2010). Damage modeling of bituminous mixtures considering mixture microstructure, viscoelasticity, and cohesive zone fracture. Canadian Journal of Civil Engineering, 37, 1125.CrossRefGoogle Scholar
  22. Knauss, W. (1970). Delayed failure-the Griffith problem for linearly viscoelastic materials. Int. J. Fracture Mech., 6, 7.Google Scholar
  23. Kratochvil, J., & Dillon, O. (1970). Thermodynamics of crystalline elastic-visco-plastic materials. Journal of Applied Physics, 41, 1470.CrossRefGoogle Scholar
  24. Lubliner, J. (2008). Plasticity Theory. Courier Dover.Google Scholar
  25. L’Académie Française. (1699). Histoire de l’Académie Royale des Sciences avec les Mémoires de Mathématique et de Physique, 206.Google Scholar
  26. Masad, E., Tashman, L., Little, D., & Zbib, H. (2005). Viscoplastic modeling of asphalt mixes with the effects of anisotropy, damage and aggregate characteristics. Mechanics of Materials, 37, 1242.CrossRefGoogle Scholar
  27. Mises, R. (1913). Mechanik der festen körper im plastisch deformablen zustand, Göttinger Nachr (p. 582). Mathematisch-Physikalische Klasse.Google Scholar
  28. Naghdi, P. (1960). Stress-strain relations in plasticity and thermoplasticity. In E. Lee & P. Symonds (Eds.), Plasticity (p. 121). Pergamon.Google Scholar
  29. Needleman, A. (1987). A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics, 54, 525.CrossRefzbMATHGoogle Scholar
  30. Negahban, M. (2012). The mechanical and thermodynamical theory of plasticity. CRC Press.Google Scholar
  31. Park, S., Kim, R., & Schapery, R. (1996). A viscoelastic continuum damage model and its application to uniaxial behavior of asphalt concrete. Mechanics of Materials, 24, 241.CrossRefGoogle Scholar
  32. Park, S., & Schapery, R. (1997). A viscoelastic constitutive model for particulate composites with growing damage. The International Journal of Solids and Structures, 34, 931.CrossRefzbMATHGoogle Scholar
  33. Prager, W. (1959). An introduction to plasticity. Addison-Wesley.Google Scholar
  34. Prandtl, L. (1928), Ein gedankenmodell zur kinetischen theorie der festern körper, Z. Angew. Mathematics and Mechanics, 8, 85Google Scholar
  35. Schapery, R. (1984). Correspondence principles and a generalized J integral for large deformation and fracture analysis of viscoelastic media. International Journal of Fracture, 25, 195.CrossRefGoogle Scholar
  36. Schapery, R. (1999). Nonlinear viscoelastic and viscoplastic constitutive equations with growing damage. International Journal of Fracture, 97, 33.CrossRefGoogle Scholar
  37. Schapery, R. (1975). A theory of crack initiation and growth in viscoelastic media I. theoretical development. International Journal of Fracture, 11, 141.Google Scholar
  38. Tashman, L., Masad, E., Little, D., & Zbib, H. (2005). A microstructure-based viscoplastic model for asphalt concrete. International Journal of Plasticity, 21, 1659.CrossRefzbMATHGoogle Scholar
  39. Timoshenko, S. (1953). History of strength of materials. McGraw-Hill.Google Scholar
  40. Tresca, H. (1864). Mémoire sur l’écoulement des corps solides soumis à de fortes pressions (vol. 59, p. 754). Paris: C.R. Academy of Sciences.Google Scholar
  41. Truesdell, C., & Toupin, R. (1954). The classical field theories, encyclopedia of physics. Springer, 3, 1.zbMATHGoogle Scholar
  42. Tvergaard, V. (1990). Effect of fibre debonding in a whisker-reinforced metal. Materials Science and Engineering, 125, 203.CrossRefGoogle Scholar
  43. Willis, J. (1967). A comparison of the fracture criteria of Griffith and Barenblatt. Journal of the Mechanics and Physics of Solids, 42, 1397.Google Scholar
  44. Zeigler, H. (1959). A modification of Prager’s hardening rule. Quarterly of Applied Mathematics, 17, 55.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Dallas N. Little
    • 1
    Email author
  • David H. Allen
    • 1
  • Amit Bhasin
    • 2
  1. 1.Texas A&M UniversityCollege StationUSA
  2. 2.The University of Texas at AustinAustinUSA

Personalised recommendations