Advertisement

The Sludge Dewaterability in Advanced Wastewater Treatment: A Survey of Four Different Membrane BioReactor Pilot Plants

  • G. Mannina
  • M. Capodici
  • G. Viviani
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 4)

Abstract

The wasted activated sludge dewaterability represents a major concern for Wastewater Treatment Plants (WWTPs) managers. Indeed, whereas the dewatered sludge could represents a re-usable matrix, the principal drawback related to the wasted sludge dewaterability is the high water content due to the presence of extracellular polymeric substances (EPS) that allow the trapping of water molecules within the bio sludge flocs. In order to provide an outlook of the dewaterability features of activated sludge derived from advanced WWTP, the present research reports a long term survey (over two years) aimed at assessing the principal dewaterability parameters of the sludge wasted from different Membrane BioReactor pilot plants.

Keywords

Sludge dewaterability MBR EPS CST SRF 

Notes

Acknowledgments

This research was funded by the Italian Ministry of Education, University and Research (MIUR) through the Research project of national interest PRIN2012 (D.M. 28 dicembre 2012 n. 957/Ric—Prot. 2012PTZAMC) entitled “Energy consumption and GreenHouse Gas (GHG) emissions in the wastewater treatment plants: a decision support system for planning and management” in which Giorgio Mannina is the Principal Investigator.

References

  1. APHA (2005) Standard methods for the examination of water and wastewater. Stand Methods 541. doi: 10.2105/AJPH.51.6.940-a
  2. Bonilla S, Tran H, Allen DG (2015) Enhancing pulp and paper mill biosludge dewaterability using enzymes. Water Res 68:692–700. doi: 10.1016/j.watres.2014.10.057 CrossRefGoogle Scholar
  3. Capodici M, Di Bella G, Nicosia S, Torregrossa M (2014) Effect of chemical and biological surfactants on activated sludge of MBR system: microscopic analysis and foam test. Bioresour Technol 177. doi: 10.1016/j.biortech.2014.11.064
  4. Capodici M, Mannina G, Torregrossa M (2016) Waste activated sludge dewaterability: comparative evaluation of sludge derived from CAS and MBR systems. Desalin Water Treat 57. doi: 10.1080/19443994.2016.1180478
  5. Chen Z, Zhang W, Wang D, Ma T, Bai R, Yu D (2016) Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical re-flocculation. Water Res 103:170–181. doi: 10.1016/j.watres.2016.07.018 CrossRefGoogle Scholar
  6. Cosenza A, Di Bella G, Mannina G, Torregrossa M (2013) The role of EPS in fouling and foaming phenomena for a membrane bioreactor. Bioresour Technol 147:184–192. doi: 10.1016/j.biortech.2013.08.026 CrossRefGoogle Scholar
  7. Ginestet P (2007) Comparative evaluation of sludge reduction routes. Eur Water Res Ser. doi: 10.1017/CBO9781107415324.004 Google Scholar
  8. Jin B, Wilén BM, Lant P (2004) Impacts of morphological, physical and chemical properties of sludge flocs on dewaterability of activated sludge. Chem Eng J 98:115–126. doi: 10.1016/j.cej.2003.05.002 CrossRefGoogle Scholar
  9. Liu H, Xiao H, Fu B, Liu H (2016) Feasibility of sludge deep-dewatering with sawdust conditioning for incineration disposal without energy input. Chem Eng J 313:655–662. doi: 10.1016/j.cej.2016.09.107 CrossRefGoogle Scholar
  10. Low EW, Chase HA, Milner MG, Curtis TP (2000) Uncoupling of metabolism to reduce biomass production in the activated sludge process. Water Res 34:3204–3212. doi: 10.1016/s0043-1354(99)00364-4 CrossRefGoogle Scholar
  11. Marinetti M, Malpei F, Bonomo L (2009) Relevance of expression phase in dewatering of sludge with chamber filter presses. J Environ Eng ASCE 135(12):1380–1387CrossRefGoogle Scholar
  12. Mannina G, Capodici M, Cosenza A, Di Trapani D (2016a) Carbon and nutrient biological removal in a University of Cape Town membrane bioreactor: Analysis of a pilot plant operated under two different C/N ratios. Chem Eng J 296:289–299. doi: 10.1016/j.cej.2016.03.114 CrossRefGoogle Scholar
  13. Mannina G, Capodici M, Cosenza A, Di Trapani D, Viviani G (2016b) Sequential batch membrane bio-reactor for wastewater treatment: the effect of increased salinity. Bioresour Technol 209:205–212. doi: 10.1016/j.biortech.2016.02.122 CrossRefGoogle Scholar
  14. Mannina G, Cosenza A, Di Trapani D, Capodici M, Viviani G (2016) Membrane bioreactors for treatment of saline wastewater contaminated by hydrocarbons (diesel fuel): an experimental pilot plant case study. Chem Eng J 291. doi: 10.1016/j.cej.2016.01.107
  15. Mowla D, Tran HN, Allen DG (2013) A review of the properties of biosludge and its relevance to enhanced dewatering processes. Biomass Bioenerg 58:365–378. doi: 10.1016/j.biombioe.2013.09.002 CrossRefGoogle Scholar
  16. Rao B, Huang G, Lu X, Wan Y, Jiang Z, Chen D, Liu X, Liang A (2017) An ultrahigh-pressure filtration and device design and optimiz study on high dry dewatering of sludge. Process Saf Environ Prot 106:129–137. doi: 10.1016/j.psep.2017.01.001 CrossRefGoogle Scholar
  17. Skinner SJ, Studer LJ, Dixon DR, Hillis P, Rees CA, Wall RC, Cavalida RG, Usher SP, Stickland AD, Scales PJ (2015) Quantification of wastewater sludge dewatering. Water Res 82:2–13. doi: 10.1016/j.watres.2015.04.045 CrossRefGoogle Scholar
  18. Wang LF, He DQ, Tong ZH, Li WW, Yu HQ (2014) Characterization of dewatering process of activated sludge assisted by cationic surfactants. Biochem Eng J 91:174–178. doi: 10.1016/j.bej.2014.08.008 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • G. Mannina
    • 1
  • M. Capodici
    • 1
  • G. Viviani
    • 1
  1. 1.Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei MaterialiUniversità degli Studi di PalermoPalermoItaly

Personalised recommendations