Skip to main content

Climate Change and Weather Related Impacts

  • Chapter
  • First Online:
  • 1578 Accesses

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

In order to address the contributions of GNSS to monitor climate change caused by increase in temperature, a distinction between weather and climate on one hand, and climate variability and climate change on the other hand is essential.

Real-time GNSS measurements have the potential to contribute to climate modeling and weather forecasting through integrative measurement of atmospheric water vapor in GNSS signal delays and measurements of soil moisture flux.

–W.C. Hammond et al. [1]

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    European Centre for Medium-Range Weather Forecasts.

  2. 2.

    See e.g., http://www.nasa.gov/mission_pages/noaa-n/main/index.html.

  3. 3.

    Thematic mapper.

  4. 4.

    http://landsat.gsfc.nasa.gov/about/L7_td.html.

  5. 5.

    High-Resolution Visible and Infrared (imaging instrument). See http://www.cnes.fr/web/CNES-en/7114-home-cnes.php.

  6. 6.

    Advanced Very High Resolution Radiometer.

  7. 7.

    High Resolution Visible.

  8. 8.

    Synthetic Aperture Radar.

References

  1. Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2011) Scientific value of real-time Global Positioning System data. Eos 92(15):125–126. doi:10.1029/2011EO150001

    Article  Google Scholar 

  2. Burroughs WJ (2007) Climate change: a multidisciplinary approach, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Houghton J (2004) Global warming, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. IPCC (Intergovernmental Panel on Climate Change) (2007), Contribution of Working Group I to the Fourth Assessment Report

    Google Scholar 

  5. Krabill W, Hanna E, Huybrechts P, Abdalati W, Cappelen J, Csatho B, Frefick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Yungel J (2004) Greenland ice sheet: increased coastal thinning. Geophysical Research Letters 31(24):L24402. doi:10.1029/2004GL021533

    Article  Google Scholar 

  6. Martens WJ, Niessen LW, Rotmans J, Jetten TH, McMichael AJ (1995) Potential impact of global climate change on malaria risk. Environmental Health Perspectives 103(5):458–464

    Article  CAS  Google Scholar 

  7. Martens WJ (1998) Health impacts of climate change and ozone depletion: an ecoepidemiologic modelling approach. Health Perspect 106:241–251

    Article  Google Scholar 

  8. Kitron U (1998) Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis. Journal of Medical Entomology 35(4):435–445

    Article  CAS  Google Scholar 

  9. Steffen W, Sanderson A, Tyson PD, Jäger J, Matson PA, Moore BIII, Oldfield F, Richardson K, Schellnhuber HJ, Turner BLII, Wasson RJ (2005) Global Change and the Earth System: A Planet Under Pressure. Springer, Berlin

    Google Scholar 

  10. Santer BD, Sausen Wigley, Wigley TML, Boyle JS, Doutriaux C, AchutaRao K, Hansen JE, Meehl GA, Roeckner E, Ruedy R, Schmidt G, Taylor KE (2003b) Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: Decadal changes. Journal of Geophysical Research 108:ACL 1-1–ACL 1-22. doi:10.1029/2002JD00225

  11. Santer BD, Wigley TML, Simmons AJ, Kallberg PW, Kelly GA, Uppala SM, Ammann C, Boyle JS, Bruggemann W, Doutriaux C, Fiorino M, Mears C, Meehl GA, Sausen R, Taylor KE, Washington WM, Wehner MF, Wentz FJ (2004) Identification of anthropogenic climate change using a second-generation reanalysis. Journal of Geophysical Research 109:D21104. doi:10.1029/2004JD005075

    Article  Google Scholar 

  12. Sausen R, Santer BD (2003) Use of changes in tropopause height to detect influences on climate. Meteorologische Zeitschrift 12(3):131–136. doi:10.1127/0941-2948/2003/0012-0131

    Article  Google Scholar 

  13. Santer BD, Wehner MF, Wigley TML, Sausen R, Meehl GA, Taylor KE, Ammann C, Arblaster J, Washington WM, Boyle JS, Bruggemann W (2003) Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301:479–483. doi:10.1126/science.1084123

    Article  CAS  Google Scholar 

  14. Agola NO, Awange JL (2014) Globalized poverty and environment. Springer, Berlin

    Book  Google Scholar 

  15. Nyakwada W (2000) The use of weather and climate forecasts by rural people to enhance food production. In: Akunda E, Mango C, Oteng’l SBB et al (eds) Sustainable environmental management for poverty alleviationin the Lake Victoria Basin. KMFRI, pp 38–42

    Google Scholar 

  16. Atheru ZKK, Ogallo LA, Ambenje PG (2000) Regional climate forecasts for enhanced food production to alleviate rural poverty around the Lake Victoria region. KMFRI, pp. 28–30

    Google Scholar 

  17. Otengi SBB (2000) Weather and climate hazards that affect food production in the Lake Victoria Basin. In: Akunda E, Mango C, Oteng’i SBB et al (eds) Sustainable environmental management for poverty alleviation in the Lake Victoria Basin. KMFRI, Kisii, 3–5 October 1995, pp. 24–27

    Google Scholar 

  18. Okoola RE (2000) Climate change as related to food production for the alleviation of rural poverty in the Lake basin region. In: Akunda E, Mango C, Oteng’i SBB et al (eds) Sustainable environmental management for poverty alleviation in the Lake Victoria Basin. KMFRI, pp 43–45

    Google Scholar 

  19. Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688. doi:10.1038/nature03906

    Article  CAS  Google Scholar 

  20. Awange JL, Mpelasoka F, Goncalves R (2016) When every drop counts: analysis of droughts in Brazil for the 1901–2013 period. Science of the Total Environment 566–567:1472–1488. doi:10.1016/j.scitotenv.2016.06.031

    Article  Google Scholar 

  21. Ummenhofer C, England M, McIntosh P, Meyers G, Pook M, Risbey J, Gupta A, Taschetto A (2009) What causes southeast Australia worst droughts? Geophysical Research Letters 36:L04706. doi:10.1029/2008GL036801

    Article  Google Scholar 

  22. Awange JL, Khandu Forootan E, Schumacher M, Heck B (2016) Exploring hydro-meteorological drought patterns over the Greater Horn of Africa (1979–2014) using remote sensing and reanalysis products. Advances in Water Resources. doi:10.1016/j.advwatres.2016.04.005

    Google Scholar 

  23. Phillips S (2006) Water Crisis. COSMOS, issue 9. http://www.cosmosmagazine.com/issues/2006/9/

  24. Mitrovica JX, Gomez N, Clark PU (2009) The Sea-Level Fingerprint of West Antarctic collapse. Science 323(5915):753. doi:10.1126/science.1166510

    Article  CAS  Google Scholar 

  25. Magadza CHD (1996) Climate change: some likely multiple impacts in southern Africa. In: Downing TE (ed) Climate change and world food security. Springer, Heidelberg, pp 449–483

    Chapter  Google Scholar 

  26. Jallow BP, Barrow MKA, Leatherman SP (1996) Vulnerability of the coastal zone of the Gambia to sea level rise and development of response options. Climate Research 6:165–177

    Article  Google Scholar 

  27. Li XY, Xu HY, Sun YL, Zhang DS, Yang ZP (2007) Lake-level change and water balance analysis at Lake Qinghai, West China during recent decades. Water Resource Management 21:1505–1516. doi:10.1007/s11269-006-9096-1

    Article  Google Scholar 

  28. Manneh A (1997 Vulnerability of the water resources sector of the Gambia to climate change. In: Republic of the Gambia: Final report of the Gambia/U.S. Country study program project on assessment of the vulnerability of the major economic sectors of the Gambia to the projected climate change. Banjul, The Gambia (unpublished)

    Google Scholar 

  29. Beaudoin AB (2002) On the identification and characterization of drought and aridity in postglacial paleoenvironmental records from the northern great plains. Ggraphie physique et Quaternaire 56(2-3): 229–246. E-SCAPE Contribution 3. Note: Volume dated 2002, but published in 2004

    Google Scholar 

  30. Mistry VV, Conway D (2003) Remote forcing of East African rainfall and relationships with fluctuations in levels of Lake Victoria. International Journal of Climatology 23:67–89. doi:10.1002/joc.861

    Article  Google Scholar 

  31. Awange JL, Ogallo L, Kwang-Ho B, Were P, Omondi P, Omute P, Omulo M (2008) Falling lake victoria water levels: is climate a contribution factor? Journal Climatic Change 89:287–297. doi:10.1007/s10584-008-9409-x

    Google Scholar 

  32. Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS Meteorology: Remote sensing of water vapour using global positioning system. Journal of Geophysical Research 97:15787–15801

    Article  Google Scholar 

  33. Brutsaert W (2005) Hydrology. An introduction, Fourth edn, Cambridge University Press, New York

    Google Scholar 

  34. Tao W (2008) Near real-time GPS PPP-inferred water vapour system development and evaluation. MSc. thesis, UCGE Reports No. 20275. http://www.geomatics.ucalgary.ca/research/publications. Accessed on 26 Aug 2009

  35. Trenberth K, Guillemot C (1996) Evaluation of the atmospheric moisture and hydrological cycle in the NCEP Reanalyses. NCAR Technical Note TN-430

    Google Scholar 

  36. Ware RH, Fulker DW, Stein SA, Anderson DN, Avery SK, Clerk RD, Droegmeier KK, Kuettner JP, Minster JB, Sorooshian S (2000) Real-time national GPS networks: opportunities for atmospheric sesning. Earth Planet Space 52:901–905

    Article  CAS  Google Scholar 

  37. Rocken C, Ware R, Hove TV, Solheim F, Alber C, Johnson J, Bevis M, Businger S (1993) Sensing atmospheric water vapour with the Global Positioning System. Geophysical Research Letters 20(23):2631–2634. doi:10.1029/93GL02935

    Article  Google Scholar 

  38. Elliot WP, Gaffen DJ (1991) On the utility of radiosonde humidity archives for climate studies. Bulletin of the American Meteorological Society 72:1507–1520

    Article  Google Scholar 

  39. Bjerknes V (1904) Das Problem der Wettervorhersage, betrachtet vom Stanpunkt der Mechanik und der Physik. Meteorologische Zeitschrift 21:1–7

    Google Scholar 

  40. Kalnay E (2003) Atmospheric modelling, data assimilation and predictability. Cambridge University Press, UK

    Google Scholar 

  41. Charney JG (1955) The use of primitive equations of motion in numerical prediction. Tellus 7:22–26

    Article  Google Scholar 

  42. Charney JG, Fjørtoft R, von Neuman J (1950) Numerical integration of the barotropic vorticity equation. Tellus 2:237–254

    Article  Google Scholar 

  43. Richardson LF (2007) Weather prediction by numerical process, 2nd edn. Cambridge Mathematical Library (the first edition appeared in 1922)

    Google Scholar 

  44. Awange JL, Bela Palancz (2016) Geospatial algebraic computations. Theory and application, Springer, Berlin

    Google Scholar 

  45. Awange JL, Grafarend EW (2005) Solving algebraic computational problems in geodesy and geoinformatics, 2nd edn. Springer, Berlin

    Google Scholar 

  46. Awange JL, Grafarend EW, Palánczz B, Zaletnyik P (2010) Algebraic geodesy and geoinformatics, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  47. Daley R (1991) Atmospheric data analysis. Cambridge University Press, Cambridge

    Google Scholar 

  48. Bergthorsson P, Döös B (1955) Numerical weather map analysis. Tellus 7:329–340

    Google Scholar 

  49. Poli P (2006) Assimilation of GNSS radio occultation data into numerical weather prediction. In: Foelsche U, Kirchengast G, Steiner A (eds) Atmosphere and climate studies by occultation methods. Springer, Berlin, pp 195–204

    Google Scholar 

  50. U.S. Climate Change Science Program (CCSP), (2008) Reanalysis of historical climate data for key atmospheric features: Implications for attribution of causes of observed change. A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. In: Dole RM, Hoerling M, Schubert S (eds) National Oceanic and Atmospheric Administration. National Climatic Data Center, Asheville, NC, p 156

    Google Scholar 

  51. Talagrand O (1997) Assimilation of observations, an introduction. Journal of the Meteorological Society of Japan. Special Issue 75(1B): 191-209

    Google Scholar 

  52. Kuo Y-H, Sokolovski SV, Anthens RA, Vandenberghe F (2000) Assimilation of the GPS radio occultation data for numerical weather prediction. Terrestrial, Atmospheric and Oceanic Science 11:157–186

    Article  Google Scholar 

  53. Syndergaard S, Kuo Y-H, Lohmann MS (2006) Observation operators for the assimilation of occultation data into atmospheric models: a review. In: Foelsche U, Kirchengast G, Steiner A (eds) Atmosphere and climate studies by occultation methods. Springer, Berlin, pp 205–224

    Google Scholar 

  54. Healy SB, Thépaut JN (2006) Assimilation experiment with CHAMP GPS radio occultation measurements. Quarterly Journal of the Royal Meteorological Society 132:605–623. doi:10.1256/qj.04.182

  55. Healey SB, Jupp AM, Marquardt C (2005) Forecast impact experiment with GPS radio occultation measurements. Geophysical Research Letters 32: L03804.1–L03804.4

    Google Scholar 

  56. Poli P, Pailleux J, Ducrocq V, Moll P, Rabier F, Mauprivez M, Dufour S, Grondin M, Lechat-Carvalho F, De Latour A, Issler J, Ries L (2008) Weather report. Meteorological Applications of GNSS from Space and on the Ground. InsideGNSS 3(8): 30-39

    Google Scholar 

  57. Baker HC, Dodson AH, Penna NT, Higgins M, Offiler D (2001) Ground-based GPS water vapour estimation: potential for meteorological forecasting. Journal of Atmospheric and Solar-Terrestrial Physics 63(12):1305–1314. doi:10.1016/S1364-6826(00)00249-2

    Article  CAS  Google Scholar 

  58. Melbourne WG, Davis ES, Duncan CB, Hajj GA, Hardy K, Kursinski R, Mechan TK, Young LE, Yunck TP (1994) The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. JPL Publication 94-18

    Google Scholar 

  59. Awange JL, Fukuda Y (2003) On possible use of GPS-LEO satellite for flood forecasting. The International Civil Engineering Conference on Sustainable Development in the 21st Century “The Civil Engineer in Development”, 12-16 August 2003, Nairobi, Kenya

    Google Scholar 

  60. Flores A, Ruffini G, Rius A (2000) 4D Tropospheric tomography using GPS slant wet delay. Annales Geophysicae 18(2):223–234. doi:10.1007/s00585-000-0223-7

    Article  Google Scholar 

  61. Randall DA, Tjemkes S (1991) Clouds, the Earth’s radiation budget and the hydrological cycle. Global and Planetary Change 4(1–3):3–9. doi:10.1016/0921-8181(91)90063-3

    Article  Google Scholar 

  62. Bevis M, Businger S, Chiswell S, Herring TA, Anthes RA, Rocken C, Ware RH (1994) GPS Meteorology: mapping zenith wet delays onto precipitable water. Journal of Applied Meteorology 33:379–386

    Article  Google Scholar 

  63. Hanssen RF, Weckwerth TM, Zebker HA, Klees R (1999) High-Resolution water vapor mapping from interferometric radar measurements. Science 283:1297–1299. doi:10.1126/science.283.5406.1297

    Article  CAS  Google Scholar 

  64. Foelsche U, Gobiet A, Steiner AK, Borsche M, Wickert J, Schmidt T, Kirchengast G (2006) Global Climatologies Based on Radio Occultation

    Google Scholar 

  65. IPCC (2001) Climate change 2001: The scientific basis. Cambridge University Press, 881 pp

    Google Scholar 

  66. Stendel M (2006) Monitoring climate variability and change by means of GNSS data. In: Foelsche U, Kirchengast G, Steiner A (eds) Atmosphere and climate studies by occultation methods. Springer, Berlin, pp 275–285

    Google Scholar 

  67. Schröder T, Leroy S, Stendel M, Kaas E (2003) Stratospheric temperatures probed by Microwave Sounding Units or by occultation of the Global Positioning System. Geophysical Research Letters 30(14):1734. doi:10.1029/2003GL017588

    Article  Google Scholar 

  68. Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing Earth’ atmosphere with radio occultation measurements using Global Positioning System. Journal of Geophysical Research 102(D19):23429–23465

    Article  Google Scholar 

  69. Yuan LL, Anthes RA, Ware RH, Rocken C, Bonner WD, Bevis MG, Businger S (1993) Sensing climate-change using the Global Positioning System. Journal of Geophyisical Research 98(D8):14925–14937. doi:10.1029/93JD00948

    Article  Google Scholar 

  70. Leroy SS, Dykema JA, Anderson JG (2006) Climate benchmarking using GNSS occultation. In: Foelsche U, Kirchengast G, Steiner A (eds) Atmosphere and climate studies by occultation methods. Springer, Berlin, pp 287–301

    Google Scholar 

  71. Leroy SS (1997) Measurements of geopotential heights by GPS radio occultation. Journal of Geophysical Research 102(D6):6971–6986

    Article  Google Scholar 

  72. Shum C, Tseng K, Kuo C, Cheng K, Dai C, Duan J, Huang Z, Lee H, Song S, Yang M (2011) Validation of GNSS-Observed climate variables over Tibetan Plateau. Journal of Aeronautics, Astronautics and Aviation 43(1):009–016

    Google Scholar 

  73. Christy JR, Spencer RW, Norris WB, Braswell WD, Parker DE (2003) Error estimates of version 5.0 of MSU-AMSU bulk atmospheric temperatures. Journal of Atmospheric and Oceanic Technology 20(5):613–629

    Article  Google Scholar 

  74. Christy JR, Spencer RW, Braswell WD (2000) MSU tropospheric temperatures: dataset construction and radiosonde comparisons. Journal of Atmospheric and Oceanic Technology 17:1153–1170

    Article  Google Scholar 

  75. Mears CA, Schabel MC, Wents FJ (2003) A reanalysis of MSU channel 2 tropospheric temperature trend. Journal of Climate 16(22):3560–3664. doi:10.1175/1520-0442(2003) 016<3650:AROTMC>2.0.CO;2

    Article  Google Scholar 

  76. Vinnikov KY, Grody NC (2003) Global warming trend of mean tropospheric temperature observed by satellites. Science 302(5643):269–272. doi:10.1126/science.1087910

    Article  CAS  Google Scholar 

  77. Seidel DJ, Randel WJ (2006) Variability and trends in the global tropopause estimated from radiosonde data. Journal of Geophysical Research 111:D21101. doi:10.1029/2006JD007363

    Article  Google Scholar 

  78. Schmidt T, Wickert J, Beyerle G, Heise S (2008) Global tropopause height trends estimated from GPS radio occultation data. Geophysical Research Letters 35:L11806. doi:10.1029/2008GL034012

    Article  Google Scholar 

  79. Pan LL, Randel WJ, Gary BL, Mahony MJ, Hintsa EJ (2004) Definitions and sharpness of the extratropical tropopause: a trace gas perspective. Journal of Geophysical Research 109:D23103. doi:10.1029/2004JD004982

    Article  Google Scholar 

  80. WMO (1957) Definition of Tropopause. Geneva. World Meteorological Organisation, Geneva

    Google Scholar 

  81. Shea DJ, Wifley SJ, Stern IR, Hoar TJ (1994) An introduction to atmospheric and oceanographic data. NCAR Tech, Note

    Google Scholar 

  82. Ware R, Exner M, Schreiner W, Anthes R, Feng D, Herman B, Gorbunov M, Sokolovskiy S, Hardy K, Kuo Y, Zou X, Trenberth K, Meehan T, Melbourne W, Businger S (1996) GPS sounding of atmosphere from low earth orbit: Preliminary Results. Bulletin of the American Meteorological Society 77:19–40. doi:10.1175/1520-0477(1996) 077<0019:GSOTAF>2.0.CO;2

    Article  Google Scholar 

  83. Rocken C, Anthes R, Exner M, Hunt D, Sokolovski S, Ware R, Gorbunov M, Schreiner S, Feng D, Hermann B, Kuo Y-H, Zou X (1997) Analysis and validation of GPS/MET data in the neutral atmosphere. Journal of Geophysical Research 102(D25):29849–29866. doi:10.1029/97JD02400

    Article  Google Scholar 

  84. Añel JA, Gimeno L, de la Torre L, Nieto R (2006) Changes in the tropopause height for the Eurasian region from CARDS radiosonde data. Naturwissenchaften 93:603–609. doi:10.1007/s00114-006-0147-5. doi 10.1007/S00114-006-0147-5

    Article  Google Scholar 

  85. Highwood EJ, Hoskins BJ, Berrisforde P (2000) Properties of the Arctic tropopause. Quarterly Journal of the Royal Meteorological Society 126:1515–1532. doi:10.1002/qj.49712656515

    Article  Google Scholar 

  86. Nagurny AP (1998) Climatic characteristics of the tropopause over the Arctic Basin. Annales Geophysicae 16:110–115

    Article  Google Scholar 

  87. Randel WJ, Wu F, Gaffen DJ (2000) Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses. Journal of Geophysical Research 105(D12):15509–15523. doi:10.1029/2000JD900155

    Article  Google Scholar 

  88. Seidel JD, Ross RJ, Angell JK, Reid GC (2001) Climatological characteristics of the tropical tropopause as revealed by radiosondes. Journal of Geophysical Research 106(D8):7857–7878. doi:10.1029/2000JD900837

    Article  Google Scholar 

  89. Varotsos C, Cartalis C, Vlamakis A, Tzanis C, Keramitsoglou I (2004) The long-term coupling between column ozone and tropopause properties. Journal of Climate 17:3843–3854. doi:10.1175/1520-0442(2004) 017<3843:TLCBCO>2.0.CO;2

    Article  Google Scholar 

  90. Agudelo PA, Curry JA (2004) Analysis of spatial distribution in tropospheric temperature trends. Geophysical Research Letters 31(L22207): doi:10.1029/2004GL02818

  91. Christy JR, Spencer RW, Lobl ES (1998) Analysis of the merging procedure for the MSU daily temeperature series. Journal of Climate 11:2016–2041

    Article  Google Scholar 

  92. Spencer RW, Christy JR, Grody NC (1990) Global atmospheric temperature monitoring with satellite microwave measurements: Methods and results 1979–84. Journal of Climate 3(10):1111–1128. doi:10.1175/1520-0442(1990) 003<1111:GATMWS>2.0.CO;2

    Article  Google Scholar 

  93. Parker DE, Gorden M, Cullum DPN, Sexton DMH, Folland CK, Rayner N (1997) A new global gridded radiosonde temperature database and recent temperature trends. Geophysical Research Letters 24(12):1499–1502. doi:10.1029/97GL01186

    Article  Google Scholar 

  94. Anthes RA, Rocken C, Kuo YH (2000) Applications of COSMIC to meteorology and climate. Terrestrial, Atmospheric and Oceanic Sciences 11:115–156

    Article  Google Scholar 

  95. Schmidt T, Heise S, Wickert J, Beyerle G, Reigber C (2005) GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters. Atmospheric Chemistry and Physics 5:1473–1488

    Article  CAS  Google Scholar 

  96. Wickert J, Michalak G, Schmidt T, Beyerle G, Cheng C, Healy S, Heise S, Huang C, Jakowski N, Köhler W, Mayer C, Offiler D, Ozawa E, Pavelyev A, Rothacher M, Tapley B, Arras C (2009) GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. Terrestrial, Atmospheric and Oceanic Sciences. 20:35–50. doi:10.3319/TAO.2007.12.26.01(F3C)

    Article  Google Scholar 

  97. Wickert J, Beyerle G, Konig K, Heise S, Grunwaldt L, Michalak G, Reigber C, Schmidt T (2005) GPS radio ocultation with CHAMP and GRACE: a first look at a new and promising satellite configuration for global atmospheric sounding. Annales Geophysicae 23:653–657. doi:10.5194/angeo-23-653-2005

    Article  Google Scholar 

  98. Free M, Seidel DJ (2005) Causes of differing temperature trends in radiosonde upper air data sets. Journal of Geophysical Research 110:D07101. doi:10.1029/2004JD005481

    Google Scholar 

  99. Khandu Awange JL, Wickert J, Schmidt T, Sharifi MA, Heck B, Fleming K (2011) GNSS remote sensing of the Australian tropopause. Climatic Change 105(3–4):597–618. doi:10.1007/s10584-010-9894-6

    Article  Google Scholar 

  100. Pittcock B (2003) Climate change: An Australian guide to the science and potential impacts. Climate Change, Australian Greenhouse Office, Canberra

    Google Scholar 

  101. Bureau of Meteorology, Australia (2009) Australia’s climate change and variability. http://www.bom.gov.au/silo/products/cli_chg/. Accessed 25 Dec 2009

  102. Slaymaker O, Kelly REJ (2007) The cryosphere and global environmental change (environmental systems and global change series), 1st edn. Wiley-Blackwell, Victoria

    Google Scholar 

  103. Baur O, Kuhn M, Featherstone W (2009) GRACE-derived ice-mass variations over Greenland by acocunting for leakage effects. Journal of Geophysical Research 114(B06407): doi:10.1029/2008JB006239

  104. Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophysical Research Letters 36:L19503. doi:10.1029/2009GL040222

    Article  Google Scholar 

  105. Abdalati W, Zwally HJ, Bindschadler B, Csatho B, Farrell SL, Fricker HA, Harding D, Kwok R, Lefsky M, Markus T, Marshak A, Neumann T, Palm S, Schutz B, Smith B, Spinhirne J, Webb C (2010) The ICESat-2 laser altimetry mission. Proceedings of the IEEE 98(5):735–751. doi:10.1109/JPROC.2009.2034765

    Article  Google Scholar 

  106. Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2010) The scientific value of high-rate, low-latency GPS data, a white paper. http://www.unavco.org/community_science/science_highlights/2010/ realtimeGPSWhitePaper2010.pdf. Accessed 06 June 2011

  107. UN (1998) Kyoto protocol to the United Nations framework convention on climate change. http://unfccc.int/resource/docs/convkp/kpeng.pdf. Accessed 26 Sept 2011

  108. UNFCCC (2007) Kyoto Protocol Reference Manual on Accounting of Emissions and Assigned Amounts. Framework Convention on Climate Change. http://unfccc.int/kyoto_protocol/items/2830.php

  109. Rosenqvist Å, Imhoff M, Milne A, Dobson C (eds.) (1999) Remote sensing and the Kyoto Protocol: a review of available and future technology for monitoring treaty compliance. Ann Arbor, Michigan, USA, 20–22 October

    Google Scholar 

  110. Richards TS, Gallego J, Achard F (2000) Sampling for forest cover change assessment at the pantropical scale. International Journal of Remote Sensing 21(6–7):1473–1490. doi:10.1080/014311600210272

    Article  Google Scholar 

  111. Blair JB, Rabine D, Hofton M (1999) The laser vegetation imaging sensor (LVIS): a medium-altitude, digitization only, airborne laser altimeter for mapping. ISPRS 54:115–122

    Article  Google Scholar 

  112. Prince SD, Goward S (1995) Global primary production: a remote sensing approach. Journal of Biogeography 22:815–835

    Article  Google Scholar 

  113. Ranson KJ, Sun G, Weishampel JF, Knox RG (1997) Forest biomass from combined ecosystem and radar backscatter. Remote Sensing of Environment 59(1):118–133. doi:10.1016/S0034-4257(96)00114-9

    Article  Google Scholar 

  114. Le Toan T, Ribbes F, Floury N, Wang LF, Ding KH, Kong JA, Kurosu Fujita M, Kurosu T (1997) Rice crop mapping and monitoring using ERS-1 data based on experiment and modelling results. IEEE Transactions on Geoscience and Remote Sensing 35:41–56. doi:10.1109/36.551933

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Awange .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Awange, J. (2018). Climate Change and Weather Related Impacts. In: GNSS Environmental Sensing. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-58418-8_11

Download citation

Publish with us

Policies and ethics