Animal Models of Stress and Tinnitus

  • Jos J. EggermontEmail author


Here I briefly review the major stress system of the body, an intrinsic stress system in the cochlea, how stress can be recognized in laboratory animals, and how stress can be induced in animals. Then I discuss the effects of stress on the cochlea and the auditory central nervous system. This leads to the examination of animal models of stress that is causal to or exacerbates tinnitus and briefly also how tinnitus may cause stress. I end with a discussion of behavioral tests that are used to decide whether animals have tinnitus. I also suggest that these various test procedures may cause or exaggerate signs of tinnitus.



This work was supported by the Natural Science and Engineering Research Council (NSERC) of Canada.


  1. Bali A, Jaggi AS (2015) Preclinical experimental stress studies: protocols, assessment and comparison. Eur J Pharmacol 746:282–292CrossRefPubMedGoogle Scholar
  2. Basappa J, Graham CE, Turcan S, Vetter DE (2012) The cochlea as an independent neuroendocrine organ: expression and possible roles of a local hypothalamic-pituitary-adrenal axis-equivalent signaling system. Hear Res 288:3–18CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bauer CA, Brozoski TJ (2001) Assessing tinnitus and prospective tinnitus therapeutics using a psychophysical animal model. J Assoc Res Otolaryngol 2(1):54–64CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brain facts (2015) A primer on the brain and nervous system. Soc Neurosci.
  5. Canlon B, Meltser I, Johansson P, Tahera Y (2007) Glucocorticoid receptors modulate auditory sensitivity to acoustic trauma. Hear Res 226:61–69CrossRefPubMedGoogle Scholar
  6. Canlon B, Theorell T, Hasson D (2013) Associations between stress and hearing problems in humans. Hear Res 295:9–15CrossRefPubMedGoogle Scholar
  7. Carstens E, Moberg GP (2000) Recognizing pain and distress in laboratory animals. ILAR J 41(2):62–71CrossRefPubMedGoogle Scholar
  8. Curtis LM, Rarey KE (1995) Effect of stress on cochlear glucocorticoid protein. II. Restraint. Hear Res 92(1–2):120–125CrossRefPubMedGoogle Scholar
  9. De Ridder D, Elgoyhen AB, Romo R, Langguth B (2011) Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci USA 108(20):8075–8080CrossRefPubMedPubMedCentralGoogle Scholar
  10. Eggermont JJ (2013a) Noise and the brain. Experience dependent developmental and adult plasticity. Academic Press, LondonGoogle Scholar
  11. Eggermont JJ (2013b) Hearing loss, hyperacusis, and tinnitus: what is modeled in animal research? Hear Res 295:140–149CrossRefPubMedGoogle Scholar
  12. Eggermont JJ, Roberts LE (2004) The Neuroscience of tinnitus. Trends Neurosci 27:676–682CrossRefPubMedGoogle Scholar
  13. Estes WK, Skinner BF (1941) Some quantitative properties of anxiety. J Exp Psychol 29:390–400CrossRefGoogle Scholar
  14. Goble TJ, Møller AR, Thompson LT (2009) Acute high-intensity sound exposure alters responses of place cells in hippocampus. Hear Res 253:52–59CrossRefPubMedGoogle Scholar
  15. Graham CE, Vetter DE (2011) The mouse cochlea expresses a local hypothalamic-pituitary-adrenal equivalent signaling system and requires corticotropin-releasing factor receptor 1 to establish normal hair cell innervation and cochlear sensitivity. J Neurosci 31(4):1267–1278CrossRefPubMedPubMedCentralGoogle Scholar
  16. Guitton MJ, Caston J, Ruel J, Johnson RM, Pujol R, Puel JL (2003) Salicylate induces tinnitus through activation of cochlear NMDA receptors. J Neurosci 23(9):3944–3952PubMedGoogle Scholar
  17. Halford JB, Anderson SD (1991) Anxiety and depression in tinnitus sufferers. J Psychosom Res 35:383–390CrossRefPubMedGoogle Scholar
  18. Heffner HE, Harrington IA (2002) Tinnitus in hamsters following exposure to intense sound. Hear Res 170(1–2):83–95CrossRefPubMedGoogle Scholar
  19. Henkin RI, Knigge KM (1963) Effect of sound on the hypothalamic-pituitary-adrenal axis. Am J Phys 204:710–714Google Scholar
  20. Horner KC (2003) The emotional ear in stress. Neurosci Biobehav Rev 27:437–446CrossRefPubMedGoogle Scholar
  21. Hu H, Su L, Xu YQ, Zhang H, Wang LW (2010) Behavioral and [F-18] fluorodeoxyglucose micro positron emission tomography imaging study in a rat chronic mild stress model of depression. Neuroscience 169:171–181CrossRefPubMedGoogle Scholar
  22. Hubert GW, Li C, Rainnie DG, Muly EC (2014) Effects of stress on AMPA receptor distribution and function in the basolateral amygdala. Brain Struct Funct 219:1169–1179CrossRefPubMedGoogle Scholar
  23. Irvine DRF (2010) Plasticity in the auditory pathway: structural organization of the descending auditory pathway. In: Rees A, Palmer AR (eds) The Oxford handbook of auditory science: the auditory brain, 2nd edn. Oxford University Press, New York, pp 387–415Google Scholar
  24. Jastreboff PJ (1990) Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res 8:228–251CrossRefGoogle Scholar
  25. Jastreboff PJ, Brennan JF, Coleman JK, Sasaki CT (1988a) Phantom auditory sensation in rats: an animal model for tinnitus. Behav Neurosci 102:811–822CrossRefPubMedGoogle Scholar
  26. Jastreboff PJ, Brennan JF, Sasaki CT (1988b) An animal model for tinnitus. Laryngoscope 98:280–286CrossRefPubMedGoogle Scholar
  27. Knipper M, van Dijk P, Nunes I, Rüttiger L, Zimmermann U (2013) Advances in the neurobiology of hearing disorders: recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol 111:17–33CrossRefPubMedGoogle Scholar
  28. Kraus KS, Canlon B (2012) Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus. Hear Res 288(1–2):34–46CrossRefPubMedGoogle Scholar
  29. Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kuk FK, Tyler RS, Russell D, Jordan H (1990) The psychometric properties of a tinnitus handicap questionnaire. Ear Hear 11:434–445CrossRefPubMedGoogle Scholar
  31. Langguth B (2011) A review of tinnitus symptoms beyond ‘ringing in the ears’: a call to action. Curr Med Res Opin 27:1635–1643CrossRefPubMedGoogle Scholar
  32. Langguth B, Landgrebe M, Kleinjung T, Sand GP, Hajak G (2011) Tinnitus and depression. World J Biol Psychiatry 12:489–500CrossRefPubMedGoogle Scholar
  33. Leaver AM, Renier L, Chevillet MA, Morgan S, Kim HJ, Rauschecker JP (2011) Dysregulation of limbic and auditory networks in tinnitus. Neuron 69:33–43CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lobarinas E, Sun W, Cushing R, Salvi R (2004) A novel behavioral paradigm for assessing tinnitus using schedule-induced polydipsia avoidance conditioning (SIP-AC). Hear Res 190(1–2):109–114CrossRefPubMedGoogle Scholar
  35. Mazurek B, Haupt H, Joachim R, Klapp BF, Stöver T, Szczepek AJ (2010) Stress induces transient auditory hypersensitivity in rats. Hear Res 259(1–2):55–63CrossRefPubMedGoogle Scholar
  36. Mazurek B, Haupt H, Olze H, Szczepek AJ (2012) Stress and tinnitus-from bedside to bench and back. Front Syst Neurosci 6:47. doi: 10.3389/fnsys.2012.00047 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mazurek B, Szczepek AJ, Hebert S (2015) Stress and tinnitus. HNO 63(4):258–265CrossRefPubMedGoogle Scholar
  38. McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87:873–904CrossRefPubMedGoogle Scholar
  39. Meltser I, Canlon B (2011) Protecting the auditory system with glucocorticoids. Hear Res 281(1–2):47–55CrossRefPubMedGoogle Scholar
  40. Muchnik C, Rosenthal T, Peleg E, Hildesheimer M (1998) Stress reaction to intense sound exposure under different arousal levels in guinea pigs. Acta Otolaryngol 118:646–650CrossRefPubMedGoogle Scholar
  41. Nava N, Treccani G, Alabsi A, Kaastrup Mueller H, Elfving B, Popoli M, Wegener G, Nyengaard JR (2017) Temporal dynamics of acute stress-induced dendritic remodeling in medial prefrontal cortex and the protective effect of desipramine. Cerebral Cortex 27(1):694–705PubMedGoogle Scholar
  42. Rarey KE, Gerhardt KJ, Curtis LM, ten Cate WJ (1995) Effect of stress on cochlear glucocorticoid protein, acoustic stress. Hear Res 82:135–138CrossRefPubMedGoogle Scholar
  43. Rauschecker JP, Leaver AM, Mühlau M (2010) Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron 66:819–826CrossRefPubMedPubMedCentralGoogle Scholar
  44. Roberts LE, Eggermont JJ, Caspary DM, Shore SE, Melcher JR, Kaltenbach JA (2010) Ringing ears: the neuroscience of tinnitus. J Neuroscience 30(45):14972–14979CrossRefPubMedGoogle Scholar
  45. Robinson SK, Viirre ES, Stein MB (2007) Antidepressant therapy in tinnitus. Hear Res 226:221–231CrossRefPubMedGoogle Scholar
  46. Ruel J, Chabbert C, Nouvian R, Bendris R, Eybalin M, Leger CL, Bourien J, Mersel M, Puel JL (2008) Salicylate enables cochlear arachidonic-acid-sensitive NMDA receptor responses. J Neurosci 28:7313–7323CrossRefPubMedGoogle Scholar
  47. Rüttiger L, Ciuffani J, Zenner HP, Knipper M (2003) A behavioral paradigm to judge acute sodium salicylate-induced sound experience in rats: a new approach for an animal model on tinnitus. Hear Res 180(1–2):39–50CrossRefPubMedGoogle Scholar
  48. Sahley TL, Nodar RH (2001) A biochemical model of peripheral tinnitus. Hear Res 152(1–2):43–54CrossRefPubMedGoogle Scholar
  49. Sahley TL, Hammongs MD, Musiek FE (2013) Endogenous dynorphins, glutamate and N-methyl-D-aspartate(NMDA) receptors may participate in a stress-mediated type-I auditory neural exacerbation of tinnitus. Brain Res 1499:80–108CrossRefPubMedGoogle Scholar
  50. Salloum RH, Sandridge S, Patton DJ, Stillitano G, Dawson G, Niforatos J, Santiago L, Kaltenbach JA (2016) Untangling the effects of tinnitus and hypersensitivity to sound (hyperacusis) in the gap detection test. Hear Res 331:92–100CrossRefPubMedGoogle Scholar
  51. Searchfield GD, Morrison-Low J, Wise K (2007) Object identification and attention training for treating tinnitus. Prog Brain Res 166:441–460CrossRefPubMedGoogle Scholar
  52. Shonkoff JP, Boyce WT, McEwen BS (2009) Neuroscience, molecular biology, and the childhood roots of health disparities: building a new framework for health promotion and disease prevention. JAMA 301(21):2252–2259CrossRefPubMedGoogle Scholar
  53. Singer W, Zuccotti A, Jaumann M, Lee SC, Panford-Walsh R, Xiong H, Zimmermann U, Franz C, Geisler HS, Köpschall I, Rohbock K, Varakina K, Verpoorten S, Reinbothe T, Schimmang T, Rüttiger L, Knipper M (2013) Noise-induced inner hair cell ribbon loss disturbs central arc mobilization: a novel molecular paradigm for understanding tinnitus. Mol Neurobiol 47(1):261–279CrossRefPubMedGoogle Scholar
  54. Timmermans W, Xiong H, Hoogenraad CC, Krugers HJ (2013) Stress and excitatory synapses: from health to disease. Neuroscience 248:626–636CrossRefPubMedGoogle Scholar
  55. Toni R (2004) The neuroendocrine system: organization and homeostatic role. J Endocrinol Investig 27(6 Suppl):35–47Google Scholar
  56. Turner JG, Brozoski TJ, Bauer CA, Parrish JL, Myers K, Hughes LF, Caspary DM (2006) Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci 120:188–195CrossRefPubMedGoogle Scholar
  57. Wallhäusser-Franke E, Brade J, Balkenhol T, D-Amelio R, Seegmüller A, Delb W (2012) Tinnitus: distinguishing between subjectively perceived loudness and tinnitus-related distress. PLoS One 7:e34583CrossRefPubMedPubMedCentralGoogle Scholar
  58. Wang Y, Liberman MC (2002) Restraint stress and protection from acoustic injury in mice. Hear Res 165(1–2):96–102CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Physiology, Pharmacology, and PsychologyUniversity of CalgaryCalgaryCanada

Personalised recommendations