Advertisement

Al-Si Alloys pp 173-210 | Cite as

Principles of Solidification

  • Francisco C. Robles Hernandez
  • Jose Martin Herrera Ramírez
  • Robert Mackay
Chapter

Abstract

This chapter reviews the fundamental aspects of alloy solidification and the various features that are measured or characterized to assess cast structure quality and solidification rate. Also reviewed are the different phases, from primary α-Al dendrites to secondary phase such as primary Si platelet, Fe-bearing phases, and Al2Cu and Mg2Si phases. Finally, the conditions for stable pore nucleation are also reviewed.

Keywords

ASTM AA Solidification sequence Dendrite coarsening Si phase growth Si modification 

References

  1. 1.
    Gruzleski, J.E., and B.M. Closset. 1990. The treatment of liquid aluminum-silicon alloys. Des Plaines: American Foundry Society, Inc.Google Scholar
  2. 2.
    Zalensas, D.L. 1993. Aluminum casting technology. Des Plaines: American Foundrymen’s Society.Google Scholar
  3. 3.
    Hamed, Q.S., M. Dogan, and R. Elliott. 1993. The dependence of secondary dendrite arm spacing on solidification conditions of Al-7 Si-0.5 Mg alloys treated with TiBAl and TiBAl/Sr additions. Cast Metals 6: 47–53.CrossRefGoogle Scholar
  4. 4.
    Paray, F., and J.E. Gruzleski. 1994. Microstructure-mechanical property relationships in a 356 alloy. Part I: Microstructure. Cast Metals 7: 29–40.CrossRefGoogle Scholar
  5. 5.
    ———. 1994. Microstructure-mechanical property relationships in a 356 alloy. Part II: Mechanical properties. Cast Metals 7: 153–163. https://doi.org/10.1080/09534962.1994.11819174.CrossRefGoogle Scholar
  6. 6.
    Djurdjevic, M., J. Sokolowski, and T. Stockwell. 1998. Control of the aluminum-silicon alloy solidification process using thermal analysis. Meta 4: 237–248.Google Scholar
  7. 7.
    Djurdjevic, M., T. Stockwell, and J. Sokolowski. 1997. The effect of strontium on the microstructure of the aluminum-silicon and aluminum-copper eutectics in the 319 aluminum alloy. International Journal of Cast Metals Research 12 (2): 67–73.CrossRefGoogle Scholar
  8. 8.
    Djurdjevic, M., H. Jiang, and J. Sokolowski. 2001. On-line prediction of aluminum–silicon eutectic modification level using thermal analysis. Materials Characterization 46 (1): 31–38.  https://doi.org/10.1016/S1044-5803(00)00090-5.CrossRefGoogle Scholar
  9. 9.
    Paray, F., and J.E. Gruzleski. 1994. Factors to consider in modification. Transactions of the American Foundrymen’s Society 102: 833–842.Google Scholar
  10. 10.
    Backerud, L., G. Chai, and J. Tamminen. 1990. Solidification characteristics of aluminum alloys. Vol. 2. Foundry alloys, 266. American Foundrymen’s Society, Inc.Google Scholar
  11. 11.
    Paray, F., and J.E. Gruzleski. 1993. Modification-A parameter to consider in the heat treatment of Al-Si alloys. Cast Metals 5: 187–197.CrossRefGoogle Scholar
  12. 12.
    Campbell, J. 1997. 10 rules for good castings. Modern Casting 87: 36–39.Google Scholar
  13. 13.
    Campbell, J. 2003. Castings. 2nd ed. Oxford, UK: Butterworth-Heinemann.Google Scholar
  14. 14.
    Bourcier, G.F., J. Dickinson, J. Tessandori, and D. Schiffer. 1985. Aluminum recycling casebook, 56. The Aluminum Association, Inc.Google Scholar
  15. 15.
    Rooy, E.L. 1992. Mechanisms of porosity formation in aluminum. Modern Casting 82 (9): 34–36.Google Scholar
  16. 16.
    Mohanty, P.S., F.H. Samuel, and J.E. Gruzleski. 1995. Experimental study on pore nucleation by inclusions in aluminum castings. Transactions of the American Foundrymen’s Society 103: 555–564.Google Scholar
  17. 17.
    Callister, W.D. 1994. Materials science and engineering. 3rd ed. New York: Wiley Publishing.Google Scholar
  18. 18.
    Crepeau, P.N. 1995. Effect of iron in Al-Si casting alloys: A critical review. Transactions of the American Foundrymen’s Society 103: 361–366.Google Scholar
  19. 19.
    Mackay, R.I., and J.E. Gruzleski. 1998. Quantification of magnesium in 356 alloy via thermal analysis. International Journal of Cast Metals Research 10: 255–266.CrossRefGoogle Scholar
  20. 20.
    MacKay, R., and J. Sokolowski. 2010. Comparison between wedge test castings and component engine block casting properties. International Journal of Metalcasting 4 (4): 33–50.  https://doi.org/10.1007/bf03355501.CrossRefGoogle Scholar
  21. 21.
    ———. 2008. Experimental observations of dendrite coarsening & Al-Si eutectic growth in progressively quenched structures of Al-Si-Cu casting alloys. International Journal of Metalcasting 2 (2): 57–75.  https://doi.org/10.1007/bf03355428.CrossRefGoogle Scholar
  22. 22.
    ———. 2010. Effect of silicon & copper concentrations, and cooling rate on soundness in casting structure. International Journal of Cast Metals Research 23: 7–22. https://doi.org/10.1179/174313309X449282.CrossRefGoogle Scholar
  23. 23.
    Mackay, R., J. Sokolowski, R. Hasenbush, and W. Evans. 2002. Effect of Cu and Si on the solidification kinetics of 3XX. X Series alloys during Mushy Zone Developemet. Transactions of the American Foundry Society.Google Scholar
  24. 24.
    Caton, M.J., J.Wayne Jones, J.M. Boileau, and J.E. Allison. 1999. The effect of solidification rate on the growth of small fatigue cracks in a cast 319-type aluminum alloy. Metallurgical and Materials Transactions A 30 (12): 3055–3068.CrossRefGoogle Scholar
  25. 25.
    Gall, K., N. Yang, M. Horstemeyer, D.L. McDowell, and J. Fan. 1999. The debonding and fracture of Si particles during the fatigue of a cast Al-Si alloy. Metallurgical and Materials Transactions A 30 (12): 3079–3088.CrossRefGoogle Scholar
  26. 26.
    Backerud, L., E. Krol, and T. Tamminen. 1996. Solidification characteristics of aluminum alloys. Vol. 1. Wrought alloys. Vol. 1, 156. AFS/Skanaluminum.Google Scholar
  27. 27.
    Emadi, D., L.V. Whiting, V.Y. Gertsman, M. Sahoo, R. MacKay, and G.E. Byczynski. 2006. Effect of tin on the mechanical properties of aluminum 319 alloy. AFS Transactions 114: 263.Google Scholar
  28. 28.
    Gauthier, J., and F. Samuel. 1995. Tensile properties and fraction behaviour of solution heat treated 319.2 Al automotive alloy. AFS Transactions 103: 849–855.Google Scholar
  29. 29.
    Anson, J.P., and J.E. Gruzleski. 1999. A quantitative evaluation of the effect of hydrogen content on the relative amounts of shrinkage and gas microporosity in a cast Al–7% Si foundry alloy. AFS Transactions 107: 456–467.Google Scholar
  30. 30.
    Dahle, A.K. 1996. Mushy zone properties and castability of aluminum alloys. PhD Thesis. Norwegian University of Science and Technology.Google Scholar
  31. 31.
    Vander Voort, George F. 1984. Metallography, principles and practice. Materials Park: ASM International.Google Scholar
  32. 32.
    Sokolowski, J., C. Kierkus, B. Brosnan, and W. Evans. 2000. Formation of insoluble Ti (Al, Si) 3 crystals in 356 alloy castings and their sedimentation in foundry equipment: Causes, effects and solutions. Transactions of the American Foundrymen’s Society 108: 491–496.Google Scholar
  33. 33.
    Davis, J.R. 1996. ASM specialty handbook: Aluminum and aluminum alloys. Materials Park: ASM International.Google Scholar
  34. 34.
    Gustafsson, G., T. Thorvaldsson, and G.L. Dunlop. 1986. The influence of Fe and Cr on the microstructure of cast Al-Si-Mg alloys. Metallurgical Transactions A 17 (1): 45–52.CrossRefGoogle Scholar
  35. 35.
    Kanicki, D.P. 1994. Changing casting demands shape Ford’s new foundry. Modern Casting 84 (9): 24–27.Google Scholar
  36. 36.
    Mocarski, S.J., G.V. Scarich, and K.C. Wu. 1991. Effect of hot isostatic pressure on cast aluminum airframe components. American Foundrymen’s Society, Inc.(USA) 99: 77–81.Google Scholar
  37. 37.
    Reinhart, T. 1994. Characterization of Alloy D357.0-T6. Anaheim: AEROMAT.Google Scholar
  38. 38.
    Mitrasinovic, A., F.C. Robles Hernandez, M. Djurdjevic, and J.H. Sokolowski. 2006. On-line prediction of the melt hydrogen and casting porosity level in 319 aluminum alloy using thermal analysis. Materials Science and Engineering A 428 (1): 41–46.CrossRefGoogle Scholar
  39. 39.
    Sigworth, G., S. Shivkumar, and D. Apelian. 1989. The influence of molten metal processing on mechanical properties of cast Al-Si-Mg alloys. AFS Transactions 98: 811–823.Google Scholar
  40. 40.
    Anson, J.P., M. Stucky, and J. Gruzleski. 2000. Effect of modification on the growth of microporosity during the solidification of aluminum–7% silicon foundry alloy. AFS Transactions 108: 611–623.Google Scholar
  41. 41.
    Fuoco, R., and E.R. Correa. 1999. Characterization of some types of oxide inclusions in aluminum alloy castings. Philadelphia: AFS Castexpo.Google Scholar
  42. 42.
    La-Orchan, W., M.H. Mulazimoglu, X.G. Chen, and J.E. Gruzleski. 1995. Quantification of the reduced pressure test. AFS Transactions 103: 565–574.Google Scholar
  43. 43.
    Crepeau, P.N. 1995. Molten aluminium contamination: Gas, inclusions and dross. In 4th international conference on molten aluminium processing. Orlando.Google Scholar
  44. 44.
    Caceres, C.H., M.B. Djurdjevic, T.J. Stockwell, and J.H. Sokolowski. 1999. The effect of Cu content on the level of microporosity in Al-Si-Cu-Mg casting alloys. Scripta Materialia 40 (5): 631–637.CrossRefGoogle Scholar
  45. 45.
    Chai, G. 1994. Dendrite coherency during equiaxed solidification in aluminium alloys. PhD Thesis. Stockholm University.Google Scholar
  46. 46.
    Dupuis, C., Z. Wang, J.P. Martin, and A. Allard. 1992. An analysis of factors affecting the response of hydrogen determination techniques for aluminum alloys. Light Metals 27: 1055–1067.Google Scholar
  47. 47.
    Edwards, G.A., G.K. Sigworth, C.H. Cáceres, D.H. St John, and J. Barresi. 1997. Microporosity formation in Al-Si-Cu-Mg casting alloys. Transactions of the American Foundrymen’s Society 105: 809–818.Google Scholar
  48. 48.
    Emadi, D. 1995. Porosity formation in Sr-modified Al-Si alloys. PhD, Department of Mining and Metallurgical Engineering. PhD Thesis, McGill University.Google Scholar
  49. 49.
    Tynelius, K.E. 1992. A parametric study of the evolution of microporosity in Al-Si foundry alloys. PhD, PhD Thesis. Drexel University.Google Scholar
  50. 50.
    Mackay, R.I. 2003. Development of a new durable Al-Si alloy for the next generation of engine block casting. Ph.D., PhD Thesis. University of Windsor.Google Scholar
  51. 51.
    Mackay, R., and G. Byczynski. 2011. The use of the Weibull statistical method to assess the reliability of cast aluminum engine blocks made from different casting processes. In Shape casting: 4th international symposium, 191–198. John Wiley & Sons, Inc.Google Scholar
  52. 52.
    Arnberg, L., L. Backerud, and G. Chai. 1996. Solidification characteristics of aluminum alloys. Vol. 3. Dendrite coherency. 247. AFS/Skanaluminum.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Francisco C. Robles Hernandez
    • 1
  • Jose Martin Herrera Ramírez
    • 2
  • Robert Mackay
    • 3
  1. 1.College of TechnologyUniversity of HoustonHoustonUSA
  2. 2.Centro de Investigación en Materiales AvanzadosChihuahuaMexico
  3. 3.Metallurgical & Heat TreatmentNemak US/Canada Business UnitWindsorCanada

Personalised recommendations