Advertisement

Al-Si Alloys pp 133-162 | Cite as

Mechanical Properties

  • Francisco C. Robles Hernandez
  • Jose Martin Herrera Ramírez
  • Robert Mackay
Chapter

Abstract

This chapter covers some of the fundamentals related to the assessment of an aluminum cast component’s mechanical integrity such as tensile and fatigue testing. Considerations that may be unique toward the mechanical testing of castings due to complex cast microstructural coarseness gradients are discussed, and the current limitations and considerations toward existing ASTM standards are also reviewed.

Keywords

Tensile testing Cylindrical bar Geometry Flat Tensile Test Geometry Fatigue Testing Welding 

Acronyms

AA

The Aluminum Association

ACARE

Advisory Council for Aeronautics Research in Europe

AFS GFN

American Foundry Society Grain Fineness Number

ASTM

American Society for Testing and Materials

CAFÉ

Corporate Average Fuel Economy

FCC

Face-Centered Cubic

GSPM

Gravity Semipermanent Molding process

GTAW

Gas Tungsten Arc Welding

HAZ

Heat-Affected Zone

HPDC

High-Pressure Die Casting

LFC

Lost foam casting

LPPM

Low-Pressure Permanent Mold

NHTSA

National Highway Traffic Safety Administration

OES

Optical Emission Spectrometer

PPAP

Production Part Approval Process

PSCP

Precision Sand Casting Process

RPT

Reduced Pressure Test

SPM

Semipermanent Mold Process

TPRE

Twin Plane Reentrant Edge

USCAR

United States Council of Automotive Research

VALF

Vacuum Assist Variant for Lost Foam

References

  1. 1.
    Weibull, W. 1951. A statistical distribution function of wide applicability. Journal of Applied Mechanics 18: 293.Google Scholar
  2. 2.
    Bourcier, G.F., J. Dickinson, J. Tessandori, and D. Schiffer. 1985. Aluminum recycling casebook, 56. Washington, D.C.: The Aluminum Association, Inc.Google Scholar
  3. 3.
    Gruzleski, J.E., and B.M. Closset. 1990. The treatment of liquid aluminum-silicon alloys, 256. Des Plaines: American Foundry Society, Inc.Google Scholar
  4. 4.
    Djurdjevic, M., H. Jiang, and J. Sokolowski. 2001. On-line prediction of aluminum–silicon eutectic modification level using thermal analysis. Materials Characterization 46 (1): 31–38.  https://doi.org/10.1016/S1044-5803(00)00090-5.CrossRefGoogle Scholar
  5. 5.
    Djurdjevic, M., J. Sokolowski, and T. Stockwell. 1998. Control of the aluminum-silicon alloy solidification process using thermal analysis. Metallurgy 4: 237–248.Google Scholar
  6. 6.
    Djurdjevic, M., T. Stockwell, and J. Sokolowski. 1997. The effect of strontium on the microstructure of the aluminum-silicon and aluminum-copper eutectics in the 319 aluminum alloy. International Journal of Cast Metals Research 12 (2): 67–73.CrossRefGoogle Scholar
  7. 7.
    Hamed, Q., M. Dogan, and R. Elliott. 1993. The dependence of secondary dendrite arm spacing on solidification conditions of Al-7 Si-0.5 Mg alloys treated with TiBAl and TiBAl/Sr additions. Cast Metals 6: 47–53.CrossRefGoogle Scholar
  8. 8.
    Paray, F., and J.E. Gruzleski. 1994. Microstructure-mechanical property relationships in a 356 alloy. Part I: Microstructure. Cast Metals 7: 29–40.CrossRefGoogle Scholar
  9. 9.
    ———. 1994. Microstructure-mechanical property relationships in a 356 alloy. Part II: Mechanical properties. Cast Metals 7: 153–163. https://doi.org/10.1080/09534962.1994.11819174.
  10. 10.
    Zalensas, D.L. 1993. Aluminum casting technology, 201. Des Plaines: American Foundrymen’s Society.Google Scholar
  11. 11.
    Paray, F., and J.E. Gruzleski. 1994. Factors to consider in modification. Transactions of the American Foundrymen’s Society 102: 833–842.Google Scholar
  12. 12.
    Backerud, L., G. Chai, and J. Tamminen. 1990. Solidification characteristics of aluminum alloys. Vol. 2. Foundry alloys, 266. American Foundrymen’s Society, Inc/Skanaluminium.Google Scholar
  13. 13.
    Paray, F., and J.E. Gruzleski. 1993. Modification-A parameter to consider in the heat treatment of Al-Si alloys. Cast Metals 5: 187–197.CrossRefGoogle Scholar
  14. 14.
    Campbell, J. 1997. 10 rules for good castings. Modern Casting 87 (4): 36–39.Google Scholar
  15. 15.
    Wang, Y., S. Xing, X. Lu, F. Robles-Hernandez, S.-S. Pei, and J. Bao. 2014. Twisted bilayer graphene with controlled rotation angles. American Physical Society Meeting 1: 37003.Google Scholar
  16. 16.
    Zhao, Y.Y., E. Ma, and J. Xu. 2008. Reliability of compressive fracture strength of Mg-Zn-Ca bulk metallic glasses: Flaw sensitivity and Weibull statistics. Scripta Materialia 58 (6): 496–499.  https://doi.org/10.1016/j.scriptamat.2007.10.052.CrossRefGoogle Scholar
  17. 17.
    Green, N.R., and J. Campbell. 1993. Statistical distributions of fracture strengths of cast Al 7Si Mg alloy. Materials Science and Engineering: A 173 (1): 261–266.  https://doi.org/10.1016/0921-5093(93)90226-5.CrossRefGoogle Scholar
  18. 18.
    Wang, Q.G., D. Apelian, and D.A. Lados. 2001. Fatigue behavior of A356-T6 aluminum cast alloys. Part I. Effect of casting defects. Journal of Light Metals 1 (1): 73–84.  https://doi.org/10.1016/S1471-5317(00)00008-0.CrossRefGoogle Scholar
  19. 19.
    Tiryakioglu, M., and J. Campbell. 2010. Weibull analysis of mechanical data for castings: A guide to the interpretation of probability plots. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science 41A (12): 3121–3129.  https://doi.org/10.1007/s11661-010-0364-6.CrossRefGoogle Scholar
  20. 20.
    Boileau, J.M., J.W. Zindel, and J.E. Allison. 1997. The effect of solidification time on the mechanical properties in a cast A356-T6 aluminum alloy. SAE International.Google Scholar
  21. 21.
    Campbell, J. 2003. Castings. 2nd ed. Oxford, UK: Butterworth-Heinemann.Google Scholar
  22. 22.
    Mohanty, P.S., F.H. Samuel, and J.E. Gruzleski. 1995. Experimental study on pore nucleation by inclusions in aluminum castings. Transactions of the American Foundrymen’s Society 103: 555–564.Google Scholar
  23. 23.
    Rooy, E.L. 1992. Mechanisms of porosity formation in aluminum. Modern Casting 82 (9): 34–36.Google Scholar
  24. 24.
    MacKay, R., and D. Szablewski. 2010. The use of Weibull statistical method to assess the reliability of a development engineered automotive casting component. International Journal of Metalcasting 4 (4): 31–45.CrossRefGoogle Scholar
  25. 25.
    Mackay, R., and G. Byczynski. 2011. The use of the Weibull statistical method to assess the reliability of cast aluminum engine blocks made from different casting processes. In Shape casting: 4th international symposium. Wiley.Google Scholar
  26. 26.
    Crepeau, P.N. 1995. Effect of iron in Al-Si casting alloys: A critical review. Transactions of the American Foundrymen’s Society 103: 361–366.Google Scholar
  27. 27.
    Caton, M.J., J. Wayne Jones, J.M. Boileau, and J.E. Allison. 1999. The effect of solidification rate on the growth of small fatigue cracks in a cast 319-type aluminum alloy. Metallurgical and Materials Transactions A 30 (12): 3055–3068.CrossRefGoogle Scholar
  28. 28.
    Mackay, R.I. 2003. Development of a new durable Al-Si alloy for the next generation of engine block casting. Ph.D. Thesis, University of Windsor.Google Scholar
  29. 29.
    Backerud, L., E. Krol, and T. Tamminen. 1996. Solidification characteristics of aluminum alloys. Vol. 1. Wrought alloys, Vol. 1, 1st ed. AFS/Skanaluminum.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Francisco C. Robles Hernandez
    • 1
  • Jose Martin Herrera Ramírez
    • 2
  • Robert Mackay
    • 3
  1. 1.College of TechnologyUniversity of HoustonHoustonUSA
  2. 2.Centro de Investigación en Materiales AvanzadosChihuahuaMexico
  3. 3.Metallurgical & Heat TreatmentNemak US/Canada Business UnitWindsorCanada

Personalised recommendations